IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/587.html
   My bibliography  Save this paper

Mean-variance dynamic optimality for DC pension schemes

Author

Listed:
  • Francesco Menoncin
  • Elena Vigna

Abstract

It is well known that the mean-variance portfolio selection is a time-inconsistent optimization problem. In the current literature, this time inconsistency is often tackled with either a game theoretical approach (Basak and Chabakauri, 2010, and Björk and Murgoci, 2010) or a so-called precommitment approach (Zhou and Li, 2000). The framework of a defined contribution (DC) pension scheme, which we deal with in this work, makes no exception, with a number of papers computing either the Nash equilibrium or the precommitment strategy in the presence of a variety of financial markets. Here, we solve a mean-variance portfolio selection problem for a DC pension fund through the dynamically optimal approach introduced by Pedersen and Peskir (2017), and we compare the dynamically optimal strategy with the precommitment one. We show that both strategies are the solution to target-based problems. The precommitment strategy has a constant target, while the dynamically optimal strategy has a time-varying target whose expectation coincides with the constant target of the previous case. We also show that the expected wealth is the same under the two approaches. Numerical simulations show that, with respect to the precommitment strategy, the dynamically optimal strategy provides: (i) a larger variance of wealth, (ii) a less volatile asset allocation, and (iii) a larger effectiveness in reacting against most unfavorable and persistent market conditions.

Suggested Citation

  • Francesco Menoncin & Elena Vigna, 2019. "Mean-variance dynamic optimality for DC pension schemes," Carlo Alberto Notebooks 587, Collegio Carlo Alberto.
  • Handle: RePEc:cca:wpaper:587
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2019/04/no.587.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. A. Pollak, 1968. "Consistent Planning," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 35(2), pages 201-208.
    2. Menoncin, Francesco & Vigna, Elena, 2017. "Mean–variance target-based optimisation for defined contribution pension schemes in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 172-184.
    3. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    4. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    5. Elena Vigna, 2014. "On efficiency of mean--variance based portfolio selection in defined contribution pension schemes," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 237-258, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    2. Liyuan Wang & Zhiping Chen, 2019. "Stochastic Game Theoretic Formulation for a Multi-Period DC Pension Plan with State-Dependent Risk Aversion," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    3. Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Defined Contribution Pension Plans: Who Has Seen the Risk?," JRFM, MDPI, vol. 12(2), pages 1-27, April.
    4. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    5. Pieter M. van Staden & Peter A. Forsyth & Yuying Li, 2023. "A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming," Papers 2303.08968, arXiv.org.
    6. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    7. Chen, Kexin & Wong, Hoi Ying, 2019. "Time-consistent mean-variance hedging of an illiquid asset with a cointegrated liquid asset," Finance Research Letters, Elsevier, vol. 29(C), pages 184-192.
    8. Liyuan Lin & Fangda Liu & Jingzhen Liu abd Luyang Yu, 2023. "The optimal reinsurance strategy with price-competition between two reinsurers," Papers 2305.00509, arXiv.org.
    9. Bosserhoff, Frank & Stadje, Mitja, 2021. "Time-consistent mean-variance investment with unit linked life insurance contracts in a jump-diffusion setting," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 130-146.
    10. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Continuous time mean-variance-utility portfolio problem and its equilibrium strategy," Papers 2005.06782, arXiv.org, revised Nov 2020.
    11. Li, Yongwu & Li, Zhongfei, 2013. "Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 86-97.
    12. F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    13. Min Dai & Hanqing Jin & Steven Kou & Yuhong Xu, 2021. "Robo-advising: a dynamic mean-variance approach," Digital Finance, Springer, vol. 3(2), pages 81-97, June.
    14. Cetemen, Doruk & Feng, Felix Zhiyu & Urgun, Can, 2023. "Renegotiation and dynamic inconsistency: Contracting with non-exponential discounting," Journal of Economic Theory, Elsevier, vol. 208(C).
    15. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    16. Cao, Jingyi & Landriault, David & Li, Bin, 2020. "Optimal reinsurance-investment strategy for a dynamic contagion claim model," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 206-215.
    17. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    18. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.
    19. Wu, Huiling & Zhang, Ling & Chen, Hua, 2015. "Nash equilibrium strategies for a defined contribution pension management," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 202-214.
    20. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.

    More about this item

    Keywords

    Time inconsistency; dynamic programming; martingale approach; pre commitment approach; mean-variance portfolio selection.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.