IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/2011.html
   My bibliography  Save this paper

A Semi-Parametric Bayesian Generalized Least Square Estimator

Author

Listed:
  • Wu, R.
  • Weeks, M.

Abstract

In this paper we propose a semi-parametric Bayesian Generalized Least Squares estimator. In a generic GLS setting where each error is a vector, parametric GLS maintains the assumption that each error vector has the same covariance matrix. In reality however, the observations are likely to be heterogeneous regarding their distributions. To cope with such heterogeneity, a Dirichlet process prior is introduced for the covariance matrices of the errors, leading to the error distribution being a mixture of a variable number of normal distributions. Our methods let the number of normal components be data driven. Two specific cases are then presented: the semi-parametric Bayesian Seemingly Unrelated Regression (SUR) for equation systems; as well as the Random Effects Model (REM) and Correlated Random Effects Model (CREM) for panel data. A series of simulation experiments is designed to explore the performance of our methods. The results demonstrate that our methods obtain smaller posterior standard deviations than the parametric Bayesian GLS. We then apply our semi-parametric Bayesian SUR and REM/CREM methods to empirical examples.

Suggested Citation

  • Wu, R. & Weeks, M., 2020. "A Semi-Parametric Bayesian Generalized Least Square Estimator," Cambridge Working Papers in Economics 2011, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2011
    Note: mw217
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe2011.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Chigira & Tsunemasa Shiba, 2012. "Dirichlet Prior for Estimating Unknown Regression Error Heteroscedasticity," Global COE Hi-Stat Discussion Paper Series gd12-248, Institute of Economic Research, Hitotsubashi University.
    2. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruochen Wu & Melvyn Weeks, 2020. "A Semi-Parametric Bayesian Generalized Least Squares Estimator," Papers 2011.10252, arXiv.org, revised Jan 2023.
    2. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
    3. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    4. Lawrence Kessler & Murat Munkin, 2015. "Bayesian estimation of panel data fractional response models with endogeneity: an application to standardized test rates," Empirical Economics, Springer, vol. 49(1), pages 81-114, August.
    5. Gael Martin, 2001. "Bayesian Analysis Of A Fractional Cointegration Model," Econometric Reviews, Taylor & Francis Journals, vol. 20(2), pages 217-234.
    6. Theo S. Eicher & Monique Newiak, 2013. "Intellectual property rights as development determinants," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 46(1), pages 4-22, February.
    7. Stanislav Radchenko, 2004. "Lags in the response of gasoline prices to changes in crude oil," Econometrics 0406001, University Library of Munich, Germany.
    8. Dale J. Poirier & Gary Koop & Justin Tobias, 2005. "Semiparametric Bayesian inference in multiple equation models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(6), pages 723-747.
    9. Kim, Jae-Young, 2012. "Model selection in the presence of nonstationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 247-257.
    10. Chao, John C. & Phillips, Peter C. B., 2002. "Jeffreys prior analysis of the simultaneous equations model in the case with n+1 endogenous variables," Journal of Econometrics, Elsevier, vol. 111(2), pages 251-283, December.
    11. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    12. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
    13. Chuanming Gao & Kajal Lahiri, 2019. "A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    14. Kleibergen, Frank, 2004. "Invariant Bayesian inference in regression models that is robust against the Jeffreys-Lindley's paradox," Journal of Econometrics, Elsevier, vol. 123(2), pages 227-258, December.
    15. Frank Kleibergen & Richard Kleijn & Richard Paap, 2000. "The Bayesian Score Statistic," Tinbergen Institute Discussion Papers 00-035/4, Tinbergen Institute.
    16. van Dijk, H.K., 2002. "On Bayesian structural inference in a simultaneous equation model," Econometric Institute Research Papers EI 2002-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    18. Theo S. Eicher & Alex Lenkoski & Adrian Raftery, 2009. "Bayesian Model Averaging and Endogeneity Under Model Uncertainty: An Application to Development Determinants," Working Papers UWEC-2009-19-FC, University of Washington, Department of Economics.
    19. Paul Gustafson, 2007. "Measurement error modelling with an approximate instrumental variable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 797-815, November.
    20. Radchenko, Stanislav, 2005. "Lags in the response of gasoline prices to changes in crude oil prices: The role of short-term and long-term shocks," Energy Economics, Elsevier, vol. 27(4), pages 573-602, July.

    More about this item

    Keywords

    Bayesian semi-parametric; generalized lease square estimator; Dirichlet process; equation system; seemingly unrelated regression; panel data; random effects model; correlated random effects model.;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.