IDEAS home Printed from https://ideas.repec.org/p/bsl/wpaper/2025-01.html
   My bibliography  Save this paper

Early nuclear power plant retirement and policy choices in the New York electricity market

Author

Listed:
  • Bah, Muhammad Maladoh
  • Weigt, Hannes

Abstract

The U.S. nuclear industry has overcome a challenging period during which low wholesale market prices threatened the survival of nuclear power plants (NPPs). From 2017 to 2019, several U.S. states initiated out-of-market support schemes to bolster the financial conditions of NPPs. This paper provides a comparative cost assessment between the preservation of three upstate New York NPPs under the zero-emission credit (ZEC) support scheme or an early retirement. In addition, the paper explores future market development scenarios with a carbon price mechanism. A bespoke cost-minimization dispatch model is developed for the New York electricity market along with four neighboring electricity markets. The comparative cost assessment of a nuclear phaseout and ZEC expenditures is not definitive. Results indicate that phasing out upstate NPPs in 2018 and 2021 incurred a slightly higher cost burden for New York consumers compared to the total ZEC expenditures. In contrast, phasing out upstate NPPs in 2030 incurs a lower cost burden compared to the total ZEC expenditure, mainly due to a high credit price. Furthermore, results show that a low carbon price of USD 51/ton would raise average NYISO prices by USD 24.1/MWh, thereby improving the long-term income conditions of NPPs, and ensuring sufficient accumulation of nuclear decommissioning funds. The study provides policymakers with a sequence of optimal policy options taking into account the pace of renewable development.

Suggested Citation

  • Bah, Muhammad Maladoh & Weigt, Hannes, 2025. "Early nuclear power plant retirement and policy choices in the New York electricity market," Working papers 2025/01, Faculty of Business and Economics - University of Basel.
  • Handle: RePEc:bsl:wpaper:2025/01
    as

    Download full text from publisher

    File URL: https://edoc.unibas.ch/96914/1/2025-01_New_York_Policy_Choice.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kunsch, Pierre L. & Friesewinkel, Jean, 2014. "Nuclear energy policy in Belgium after Fukushima," Energy Policy, Elsevier, vol. 66(C), pages 462-474.
    2. Pierre Louis Kunsch & Jean Friesewinkel, 2014. "Nuclear energy policy in Belgium after Fukushima," ULB Institutional Repository 2013/189447, ULB -- Universite Libre de Bruxelles.
    3. Nakata, T, 2002. "Analysis of the impacts of nuclear phase-out on energy systems in Japan," Energy, Elsevier, vol. 27(4), pages 363-377.
    4. Michaela Fursch & Dietmar Lindenberger & Raimund Malischek & Stephan Nagl & Timo Panke & Johannes Truby, 2012. "German Nuclear Policy Reconsidered: Implications for the Electricity Market," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 3).
    5. Roth, Michael Buchdahl & Jaramillo, Paulina, 2017. "Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy," Energy, Elsevier, vol. 131(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    2. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    3. Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.
    4. Kharecha, Pushker A. & Sato, Makiko, 2019. "Implications of energy and CO2 emission changes in Japan and Germany after the Fukushima accident," Energy Policy, Elsevier, vol. 132(C), pages 647-653.
    5. Mariola Piłatowska & Andrzej Geise, 2021. "Impact of Clean Energy on CO 2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Zimmermann, Florian & Keles, Dogan, 2022. "State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects," Working Paper Series in Production and Energy 64, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    7. Chuanwang Sun & Nan Lyu & Xiaoling Ouyang, 2014. "Chinese Public Willingness to Pay to Avoid Having Nuclear Power Plants in the Neighborhood," Sustainability, MDPI, vol. 6(10), pages 1-27, October.
    8. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    9. Soytas, Ugur & Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2022. "Economic and environmental implications of the nuclear power phase-out in Belgium: Insights from time-series models and a partial differential equations algorithm," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 241-256.
    10. Wang, Ge & Zhang, Qi & Mclellan, Benjamin C. & Li, Hailong, 2016. "Multi-region optimal deployment of renewable energy considering different interregional transmission scenarios," Energy, Elsevier, vol. 108(C), pages 108-118.
    11. Andrzej T. Szablewski, 2015. "Czy rozwijać energetykę jądrową w Polsce?," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 1, pages 27-54.
    12. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    13. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    14. Kosai, Shoki & Yamasue, Eiji, 2019. "Recommendation to ASEAN nuclear development based on lessons learnt from the Fukushima nuclear accident," Energy Policy, Elsevier, vol. 129(C), pages 628-635.
    15. Ibanez-Lopez, A.S. & Moratilla-Soria, B.Y., 2017. "An assessment of Spain's new alternative energy support framework and its long-term impact on wind power development and system costs through behavioral dynamic simulation," Energy, Elsevier, vol. 138(C), pages 629-646.
    16. Ana Belén Alonso-Conde & Javier Rojo-Suárez, 2020. "Nuclear Hazard and Asset Prices: Implications of Nuclear Disasters in the Cross-Sectional Behavior of Stock Returns," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    17. Zeng, Ming & Wang, Shicheng & Duan, Jinhui & Sun, Jinghui & Zhong, Pengyuan & Zhang, Yingjie, 2016. "Review of nuclear power development in China: Environment analysis, historical stages, development status, problems and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1369-1383.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Japanese fuel mix strategy after disaster of Fukushima Daiichi nuclear power plant: Lessons from international comparison among industrial nations measured by DEA environmental assessment in time hori," Energy Economics, Elsevier, vol. 52(PA), pages 87-103.
    19. Mu, Ruimin & Zuo, Jian & Yuan, Xueliang, 2015. "China's approach to nuclear safety — From the perspective of policy and institutional system," Energy Policy, Elsevier, vol. 76(C), pages 161-172.
    20. Pierre L. Kunsch, 2016. "How system dynamics education may enhance virtue-based Ethics," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 33-52, June.

    More about this item

    Keywords

    nuclear power plant; ZEC; New York; electricity market; carbon price;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bsl:wpaper:2025/01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WWZ (email available below). General contact details of provider: https://edirc.repec.org/data/wwzbsch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.