IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p812-d492917.html
   My bibliography  Save this article

Impact of Clean Energy on CO 2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries

Author

Listed:
  • Mariola Piłatowska

    (Department of Econometrics and Statistics, Faculty of Economics, Nicolaus Copernicus University, 13A Gagarina Street, 87-100 Toruń, Poland)

  • Andrzej Geise

    (Department of Econometrics and Statistics, Faculty of Economics, Nicolaus Copernicus University, 13A Gagarina Street, 87-100 Toruń, Poland)

Abstract

This study explores the impact of clean energy and non-renewable energy consumption on CO 2 emissions and economic growth within two phases (formative and expansion) of renewable energy diffusion for three selected countries (France, Spain, and Sweden). The vector autoregression (VAR) model is estimated on the basis of annual data disaggregated into quarterly data. The Granger causality results reveal distinctive differences in the causality patterns across countries and two phases of renewables diffusion. Clean energy consumption contributes to a decline of emissions more clearly in the expansion phase in France and Spain. However, this effect seems to be counteracted by the increases in emissions due to economic growth and non-renewable energy consumption. Therefore, clean energy consumption has not yet led to a decoupling of economic growth from emissions in France and Spain; in contrast, the findings for Sweden evidence such a decoupling due to the neutrality between economic growth and emissions. Generally, the findings show that despite the enormous growth of renewables and active mitigation policies, CO 2 emissions have not substantially decreased in selected countries or globally. Focused and coordinated policy action, not only at the EU level but also globally, is urgently needed to overhaul existing fossil-fuel economies into low-carbon economies and ultimately meet the relevant climate targets.

Suggested Citation

  • Mariola Piłatowska & Andrzej Geise, 2021. "Impact of Clean Energy on CO 2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries," Energies, MDPI, vol. 14(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:812-:d:492917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bento, Nuno & Wilson, Charlie & Anadon, Laura Diaz, 2018. "Time to get ready: Conceptualizing the temporal and spatial dynamics of formative phases for energy technologies," Energy Policy, Elsevier, vol. 119(C), pages 282-293.
    2. Adamantiades, A. & Kessides, I., 2009. "Nuclear power for sustainable development: Current status and future prospects," Energy Policy, Elsevier, vol. 37(12), pages 5149-5166, December.
    3. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    4. Bhattacharya, Mita & Awaworyi Churchill, Sefa & Paramati, Sudharshan Reddy, 2017. "The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions," Renewable Energy, Elsevier, vol. 111(C), pages 157-167.
    5. Choi, Eunho & Heshmati, Almas & Cho, Yongsung, 2010. "An Empirical Study of the Relationships between CO2 Emissions, Economic Growth and Openness," IZA Discussion Papers 5304, Institute of Labor Economics (IZA).
    6. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    7. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2020. "Renewable energy consumption and economic growth nexus: Evidence from a threshold model," Energy Policy, Elsevier, vol. 139(C).
    8. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
    9. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    10. Susana Silva & Isabel Soares & Carlos Pinho, 2012. "The Impact of Renewable Energy Sources on Economic Growth and CO2 Emissions - a SVAR approach," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 133-144.
    11. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    12. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    13. Thai-Ha Le, Youngho Chang, and Donghyun Park, 2020. "Renewable and Nonrenewable Energy Consumption, Economic Growth, and Emissions: International Evidence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-92.
    14. Jaforullah, Mohammad & King, Alan, 2015. "Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence," Energy Economics, Elsevier, vol. 49(C), pages 711-717.
    15. Tugcu, Can Tansel & Topcu, Mert, 2018. "Total, renewable and non-renewable energy consumption and economic growth: Revisiting the issue with an asymmetric point of view," Energy, Elsevier, vol. 152(C), pages 64-74.
    16. Kunsch, Pierre L. & Friesewinkel, Jean, 2014. "Nuclear energy policy in Belgium after Fukushima," Energy Policy, Elsevier, vol. 66(C), pages 462-474.
    17. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    18. Apergis, Nicholas & Payne, James E., 2010. "Coal consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(3), pages 1353-1359, March.
    19. Pierre Louis Kunsch & Jean Friesewinkel, 2014. "Nuclear energy policy in Belgium after Fukushima," ULB Institutional Repository 2013/189447, ULB -- Universite Libre de Bruxelles.
    20. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    21. Richmond, Amy K. & Kaufmann, Robert K., 2006. "Is there a turning point in the relationship between income and energy use and/or carbon emissions?," Ecological Economics, Elsevier, vol. 56(2), pages 176-189, February.
    22. Aviral Kumar Tiwari, 2011. "A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India," Economics Bulletin, AccessEcon, vol. 31(2), pages 1793-1806.
    23. Luqman, Muhammad & Ahmad, Najid & Bakhsh, Khuda, 2019. "Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model," Renewable Energy, Elsevier, vol. 139(C), pages 1299-1309.
    24. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    25. Fosten, Jack & Morley, Bruce & Taylor, Tim, 2012. "Dynamic misspecification in the environmental Kuznets curve: Evidence from CO2 and SO2 emissions in the United Kingdom," Ecological Economics, Elsevier, vol. 76(C), pages 25-33.
    26. Menegaki, Angeliki N., 2011. "Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis," Energy Economics, Elsevier, vol. 33(2), pages 257-263, March.
    27. Katarina Juselius & Ronald MacDonald, 2000. "Interest Rate and Price Linkages between the USA and Japan: Evidence from the Post-Bretton Woods Period," Discussion Papers 00-13, University of Copenhagen. Department of Economics.
    28. Aviral Kumar Tiwari, 2011. "Comparative performance of renewable and nonrenewable energy source on economic growth and CO2 emissions of Europe and Eurasian countries: A PVAR approach," Economics Bulletin, AccessEcon, vol. 31(3), pages 2356-2372.
    29. Mounir Ben Mbarek & Racha Khairallah & Rochdi Feki, 2015. "Causality relationships between renewable energy, nuclear energy and economic growth in France," Environment Systems and Decisions, Springer, vol. 35(1), pages 133-142, March.
    30. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    31. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    32. Sadorsky, Perry, 2009. "Renewable energy consumption, CO2 emissions and oil prices in the G7 countries," Energy Economics, Elsevier, vol. 31(3), pages 456-462, May.
    33. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    34. Tamaryn Napp & Dan Bernie & Rebecca Thomas & Jason Lowe & Adam Hawkes & Ajay Gambhir, 2017. "Exploring the Feasibility of Low-Carbon Scenarios Using Historical Energy Transitions Analysis," Energies, MDPI, vol. 10(1), pages 1-36, January.
    35. Mariola Piłatowska & Andrzej Geise & Aneta Włodarczyk, 2020. "The Effect of Renewable and Nuclear Energy Consumption on Decoupling Economic Growth from CO 2 Emissions in Spain," Energies, MDPI, vol. 13(9), pages 1-18, April.
    36. Chang, Ting-Huan & Huang, Chien-Ming & Lee, Ming-Chih, 2009. "Threshold effect of the economic growth rate on the renewable energy development from a change in energy price: Evidence from OECD countries," Energy Policy, Elsevier, vol. 37(12), pages 5796-5802, December.
    37. repec:ers:journl:v:xv:y:2012:i:sie:p:133-144 is not listed on IDEAS
    38. Baek, Jungho & Pride, Dominique, 2014. "On the income–nuclear energy–CO2 emissions nexus revisited," Energy Economics, Elsevier, vol. 43(C), pages 6-10.
    39. Jeyhun I. Mikayilov & Fakhri J. Hasanov & Marzio Galeotti, 2018. "Decoupling of C02 Emissions and GDP: A Time-Varying Cointegration Approach," IEFE Working Papers 101, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    40. Abdullah Tahir & Jameel Ahmed & Waqas Ahmed, 2018. "Robust Quarterization of GDP and Determination of Business Cycle Dates for IGC Partner Countries," SBP Working Paper Series 97, State Bank of Pakistan, Research Department.
    41. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(5), pages 815-849, October.
    42. Chien, Taichen & Hu, Jin-Li, 2007. "Renewable energy and macroeconomic efficiency of OECD and non-OECD economies," Energy Policy, Elsevier, vol. 35(7), pages 3606-3615, July.
    43. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    44. repec:ocp:ppaper:pb-1727 is not listed on IDEAS
    45. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boubaker, Sabri & Omri, Anis, 2022. "How does renewable energy contribute to the growth versus environment debate?," Resources Policy, Elsevier, vol. 79(C).
    2. Chenggang Li & Tao Lin & Zhenci Xu, 2021. "Impact of Hydropower on Air Pollution and Economic Growth in China," Energies, MDPI, vol. 14(10), pages 1-20, May.
    3. Chang, Tsangyao & Hsu, Chen-Min & Chen, Sheng-Tung & Wang, Mei-Chih & Wu, Cheng-Feng, 2023. "Revisiting economic growth and CO2 emissions nexus in Taiwan using a mixed-frequency VAR model," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 319-342.
    4. Wei Fan & Xi Luo & Jiabei Yu & Yiyang Dai, 2021. "An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model," Energies, MDPI, vol. 14(22), pages 1-17, November.
    5. Khezri, Mohsen & Mamkhezri, Jamal & Heshmati, Almas, 2024. "Exploring non-linear causal nexus between economic growth and energy consumption across various R&D regimes: Cross-country evidence from a PSTR model," Energy Economics, Elsevier, vol. 133(C).
    6. Collins C. Ngwakwe, 2024. "The Effect of Clean Energy Financial Investment on Carbon Reduction," Oblik i finansi, Institute of Accounting and Finance, issue 1, pages 49-53, March.
    7. Mohd Alsaleh & Xiaohui Wang, 2023. "How Does Information and Communication Technology Affect Geothermal Energy Sustainability?," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    8. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2023. "Forecasting Household Energy Consumption in European Union Countries: An Econometric Modelling Approach," Energies, MDPI, vol. 16(14), pages 1-21, July.
    9. Huang, Xiaoling & Tian, Peng, 2023. "Polluting thy neighbor or benefiting thy neighbor: Effects of the clean energy development on haze pollution in China," Energy, Elsevier, vol. 268(C).
    10. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    11. Miloš Žarković & Slobodan Lakić & Jasmina Ćetković & Bojan Pejović & Srdjan Redzepagic & Irena Vodenska & Radoje Vujadinović, 2022. "Effects of Renewable and Non-Renewable Energy Consumption, GHG, ICT on Sustainable Economic Growth: Evidence from Old and New EU Countries," Sustainability, MDPI, vol. 14(15), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariola Piłatowska & Andrzej Geise & Aneta Włodarczyk, 2020. "The Effect of Renewable and Nuclear Energy Consumption on Decoupling Economic Growth from CO 2 Emissions in Spain," Energies, MDPI, vol. 13(9), pages 1-18, April.
    2. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    3. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    4. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model," Energy, Elsevier, vol. 119(C), pages 453-471.
    5. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Renewable and non-renewable energy-growth-emissions linkages: Review of emerging trends with policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 275-291.
    6. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2020. "Renewable energy consumption and economic growth nexus: Evidence from a threshold model," Energy Policy, Elsevier, vol. 139(C).
    7. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    8. Deshan Li & Degang Yang, 2016. "Does Non-Fossil Energy Usage Lower CO 2 Emissions? Empirical Evidence from China," Sustainability, MDPI, vol. 8(9), pages 1-11, August.
    9. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    10. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    11. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    12. Montassar Kahia & Anis Omri & Bilel Jarraya, 2021. "Green Energy, Economic Growth and Environmental Quality Nexus in Saudi Arabia," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    13. Chen, Yulong & Zhao, Jincai & Lai, Zhizhu & Wang, Zheng & Xia, Haibin, 2019. "Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis," Renewable Energy, Elsevier, vol. 140(C), pages 341-353.
    14. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    15. Abdullah Emre ÇAĞLAR & Çiğdem DEMİR, 2018. "Yenilenebilir Kaynaklı Enerji Tüketimi ve Ekonomik Büyüme İlişkisi: Avrupa Birliğine Ait Yeni Bulgular," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 14(28), pages 9-30, December.
    16. Seong-Hoon Lee & Yonghun Jung, 2018. "Causal dynamics between renewable energy consumption and economic growth in South Korea: Empirical analysis and policy implications," Energy & Environment, , vol. 29(7), pages 1298-1315, November.
    17. Soytas, Ugur & Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2022. "Economic and environmental implications of the nuclear power phase-out in Belgium: Insights from time-series models and a partial differential equations algorithm," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 241-256.
    18. Shahbaz, Muhammad & Zeshan, Muhammad & Afza, Talat, 2012. "Is energy consumption effective to spur economic growth in Pakistan? New evidence from bounds test to level relationships and Granger causality tests," Economic Modelling, Elsevier, vol. 29(6), pages 2310-2319.
    19. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    20. Das, Narasingha & Bera, Pinki & Panda, Deepak, 2022. "Can economic development & environmental sustainability promote renewable energy consumption in India?? Findings from novel dynamic ARDL simulations approach," Renewable Energy, Elsevier, vol. 189(C), pages 221-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:812-:d:492917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.