IDEAS home Printed from https://ideas.repec.org/p/bol/bodewp/wp836.html
   My bibliography  Save this paper

Effective Trade Execution

Author

Listed:
  • R. Cesari
  • M. Marzo
  • P. Zagaglia

Abstract

This paper examines the role of algorithmic trading in modern financial markets. Additionally, order types, characteristics, and special features of algorithmic trading are described under the lens provided by the large development of high frequency trading technology. Special order types are examined together with an intuitive description of the implied dynamics of the order book conditional to special orders (iceberg and hidden). The chapter provides an analysis of the transaction costs associated with trading activity and examines the most common trading strategy employed in the market. It also examines optimal execution strategy with the description of the Efficient Trading Frontier. These concepts represent the tools needed to understand the most recent innovations infinancial markets and the most recent advances in microstructures research.

Suggested Citation

  • R. Cesari & M. Marzo & P. Zagaglia, 2012. "Effective Trade Execution," Working Papers wp836, Dipartimento Scienze Economiche, Universita' di Bologna.
  • Handle: RePEc:bol:bodewp:wp836
    as

    Download full text from publisher

    File URL: http://amsacta.unibo.it/4007/1/WP836.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    2. Albert J. Menkveld & Boyan Jovanovic, 2010. "Middlemen in Limit Order Markets," 2010 Meeting Papers 955, Society for Economic Dynamics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luyao Zhang & Tianyu Wu & Saad Lahrichi & Carlos-Gustavo Salas-Flores & Jiayi Li, 2022. "A Data Science Pipeline for Algorithmic Trading: A Comparative Study of Applications for Finance and Cryptoeconomics," Papers 2206.14932, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eyal Neuman & Alexander Schied, 2018. "Protecting Pegged Currency Markets from Speculative Investors," Papers 1801.07784, arXiv.org, revised Feb 2021.
    2. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    3. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    4. Claudio Bellani & Damiano Brigo, 2021. "Mechanics of good trade execution in the framework of linear temporary market impact," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 143-163, January.
    5. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    6. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    7. Yan Dolinsky & Doron Greenstein, 2024. "A Note on Optimal Liquidation with Linear Price Impact," Papers 2402.14100, arXiv.org, revised Aug 2024.
    8. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    9. Damiano Brigo & Giuseppe Di Graziano, 2013. "Optimal execution comparison across risks and dynamics, with solutions for displaced diffusions," Papers 1304.2942, arXiv.org, revised May 2014.
    10. Julien Vaes & Raphael Hauser, 2018. "Optimal Trade Execution with Uncertain Volume Target," Papers 1810.11454, arXiv.org, revised Sep 2021.
    11. Jin Hyuk Choi & Tae Ung Gang, 2021. "Optimal investment in illiquid market with search frictions and transaction costs," Papers 2101.09936, arXiv.org, revised Aug 2021.
    12. Diasakos, Theodoros M, 2013. "Comparative Statics of Asset Prices: the effect of other assets' risk," SIRE Discussion Papers 2013-94, Scottish Institute for Research in Economics (SIRE).
    13. Felix Dammann & Giorgio Ferrari, 2023. "Optimal execution with multiplicative price impact and incomplete information on the return," Finance and Stochastics, Springer, vol. 27(3), pages 713-768, July.
    14. Anastasis Kratsios & Cody Hyndman, 2023. "Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning," Papers 2302.09176, arXiv.org.
    15. Theodoros M. Diasakos, 2011. "A Simple Characterization of Dynamic Completeness in Continuous Time," Carlo Alberto Notebooks 211, Collegio Carlo Alberto.
    16. Choi, Jin Hyuk & Larsen, Kasper & Seppi, Duane J., 2019. "Information and trading targets in a dynamic market equilibrium," Journal of Financial Economics, Elsevier, vol. 132(3), pages 22-49.
    17. Graewe, Paulwin & Popier, Alexandre, 2021. "Asymptotic approach for backward stochastic differential equation with singular terminal condition," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 247-277.
    18. Ulrich Horst & Evgueni Kivman, 2024. "Optimal trade execution under small market impact and portfolio liquidation with semimartingale strategies," Finance and Stochastics, Springer, vol. 28(3), pages 759-812, July.
    19. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    20. Dammann, Felix & Ferrari, Giorgio, 2022. "Optimal Execution with Multiplicative Price Impact and Incomplete Information on the Return," Center for Mathematical Economics Working Papers 663, Center for Mathematical Economics, Bielefeld University.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bol:bodewp:wp836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dipartimento Scienze Economiche, Universita' di Bologna (email available below). General contact details of provider: https://edirc.repec.org/data/sebolit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.