A Data Science Pipeline for Algorithmic Trading: A Comparative Study of Applications for Finance and Cryptoeconomics
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Menkhoff, Lukas, 2010.
"The use of technical analysis by fund managers: International evidence,"
Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
- Menkhoff, Lukas, 2010. "The Use of Technical Analysis by Fund Managers: International Evidence," Hannover Economic Papers (HEP) dp-446, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Cesari, Riccardo & Marzo, Massimiliano & Zagaglia, Paolo, 2012.
"Effective Trade Execution,"
MPRA Paper
39619, University Library of Munich, Germany.
- R. Cesari & M. Marzo & P. Zagaglia, 2012. "Effective Trade Execution," Working Papers wp836, Dipartimento Scienze Economiche, Universita' di Bologna.
- Riccardo Cesari & Massimiliano Marzo & Paolo Zagaglia, 2012. "Effective Trade Execution," Papers 1206.5324, arXiv.org.
- Riccardo Cesari & Massimiliano Marzo & Paolo Zagaglia, 2012. "Effective Trade Execution," Working Paper series 41_12, Rimini Centre for Economic Analysis.
- Luyao Zhang & Yulin Liu, 2021. "Optimal Algorithmic Monetary Policy," Papers 2104.07888, arXiv.org, revised Oct 2021.
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
- repec:bla:jfinan:v:43:y:1988:i:1:p:97-112 is not listed on IDEAS
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
- Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992.
"Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,"
Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
- Brock, W. & Lakonishok, J. & Lebaron, B., 1991. "Simple Technical Trading Rules And The Stochastic Properties Of Stock Returns," Working papers 90-22, Wisconsin Madison - Social Systems.
- Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
- Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
- Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yu, Haoyang & Sun, Yutong & Liu, Yulin & Zhang, Luyao, 2023.
"Bitcoin Gold, Litecoin Silver: An Introduction to Cryptocurrency’s Valuation and Trading Strategy,"
OSF Preprints
t2fku, Center for Open Science.
- Haoyang Yu & Yutong Sun & Yulin Liu & Luyao Zhang, 2023. "Bitcoin Gold, Litecoin Silver:An Introduction to Cryptocurrency's Valuation and Trading Strategy," Papers 2308.00013, arXiv.org.
- Jiasheng Zhu & Luyao Zhang, 2023. "Educational Game on Cryptocurrency Investment: Using Microeconomic Decision Making to Understand Macroeconomics Principles," Papers 2301.10541, arXiv.org, revised Feb 2023.
- Zhang, Luyao & Sun, Yutong & Quan, Yutong & Cao, Jiaxun & Tong, Xin, 2023. "On the Mechanics of NFT Valuation: AI Ethics and Social Media," OSF Preprints qwpdx, Center for Open Science.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiasheng Zhu & Luyao Zhang, 2023. "Educational Game on Cryptocurrency Investment: Using Microeconomic Decision Making to Understand Macroeconomics Principles," Papers 2301.10541, arXiv.org, revised Feb 2023.
- Tsai, Yi-Cheng & Lei, Chin-Laung & Cheung, William & Wu, Chung-Shu & Ho, Jan-Ming & Wang, Chuan-Ju, 2018. "Exploring the Persistent Behavior of Financial Markets," Finance Research Letters, Elsevier, vol. 24(C), pages 199-220.
- J. Zhu & L. Zhang, 2023. "Educational Game on Cryptocurrency Investment: Using Microeconomic Decision-Making to Understand Macroeconomics Principles," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 49(2), pages 262-272, April.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018.
"Long Run Returns Predictability and Volatility with Moving Averages,"
Risks, MDPI, vol. 6(4), pages 1-18, September.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Documentos de Trabajo del ICAE 2018-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chang, C-L. & Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Econometric Institute Research Papers EI2018-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Trifan, Emanuela, 2004. "Entscheidungsregeln und ihr Einfluss auf den Aktienkurs," Darmstadt Discussion Papers in Economics 131, Darmstadt University of Technology, Department of Law and Economics.
- Pyun, Chong Soo & Lee, Sa Young & Nam, Kiseok, 2000. "Volatility and information flows in emerging equity market: A case of the Korean Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 9(4), pages 405-420.
- Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
- Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
- Siu Hin Tang & Mathieu Rosenbaum & Chao Zhou, 2023. "Forecasting Volatility with Machine Learning and Rough Volatility: Example from the Crypto-Winter," Papers 2311.04727, arXiv.org, revised Feb 2024.
- Hubert Dichtl, 2020. "Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?," Review of Financial Economics, John Wiley & Sons, vol. 38(2), pages 352-378, April.
- K. J. Hong & S. Satchell, 2015. "Time series momentum trading strategy and autocorrelation amplification," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1471-1487, September.
- Masahiro Watanabe, 2003. "A Model of Stochastic Liquidity," Yale School of Management Working Papers ysm385, Yale School of Management.
- Husam Rjoub & Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2023. "Blockchain technology-based FinTech banking sector involvement using adaptive neuro-fuzzy-based K-nearest neighbors algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
- Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
- Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "Determinants of bid and ask quotes and implications for the cost of trading," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 656-678, September.
- Jiang Wang, 2002. "Trading Volume and Asset Prices," Annals of Economics and Finance, Society for AEF, vol. 3(2), pages 299-359, November.
- Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
- Laurens Swinkels, 2023. "Empirical evidence on the ownership and liquidity of real estate tokens," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-29, December.
- Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
- Kirimhan, Destan, 2023. "Importance of anti-money laundering regulations among prosumers for a cybersecure decentralized finance," Journal of Business Research, Elsevier, vol. 157(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-08-08 (Big Data)
- NEP-CMP-2022-08-08 (Computational Economics)
- NEP-FMK-2022-08-08 (Financial Markets)
- NEP-MST-2022-08-08 (Market Microstructure)
- NEP-PAY-2022-08-08 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.14932. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.