IDEAS home Printed from https://ideas.repec.org/p/bog/wpaper/280.html
   My bibliography  Save this paper

A study of the effect of data transformation and «linearization» on time series forecasts. A practical approach

Author

Listed:
  • Alexandros E. Milionis

    (Bank of Greece and University of the Aegean)

  • Nikolaos G. Galanopoulos

    (Bank of Greece (Trainee) and University of the Aegean)

Abstract

Very often in actual macroeconomic time series there are causes that disrupt the underlying stochastic process and their treatment is known as «linearization». In addition, variance non-stationarity is in many cases also present in such series and is removed by proper data transformation. The impact of either (data transformation - linearization) on the quality of forecasts has not been adequately studied to date. This work examines their effect on univariate forecasting considering each one separately, as well as in combination, using twenty of the most important time series for the Greek economy. Empirical findings show a significant improvement in forecasts’ confidence intervals, but no substantial improvement in point forecasts. Furthermore, the combined transformation-linearization procedure improves substantially the non-normality problem encountered in many macroeconomic time series.

Suggested Citation

  • Alexandros E. Milionis & Nikolaos G. Galanopoulos, 2020. "A study of the effect of data transformation and «linearization» on time series forecasts. A practical approach," Working Papers 280, Bank of Greece.
  • Handle: RePEc:bog:wpaper:280
    as

    Download full text from publisher

    File URL: https://www.bankofgreece.gr/Publications/Paper2020280.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    3. Alexandros Milionis, 2004. "The importance of variance stationarity in economic time series modelling. A practical approach," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 265-278.
    4. Alexandros E. Milionis & Nikolaos G. Galanopoulos, 2018. "Time series with interdependent level and second moment: statistical testing and applications with Greek external trade and simulated data," Working Papers 246, Bank of Greece.
    5. Nelson, Harold Jr. & Granger, C. W. J., 1979. "Experience with using the Box-Cox transformation when forecasting economic time series," Journal of Econometrics, Elsevier, vol. 10(1), pages 57-69, April.
    6. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    7. Meese, Richard & Geweke, John, 1984. "A Comparison of Autoregressive Univariate Forecasting Procedures for Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 191-200, July.
    8. Victor Gómez & Agustín Maravall, 1996. "Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996)," Working Papers 9628, Banco de España.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandros E. Milionis & Nikolaos G. Galanopoulos & Peter Hatzopoulos & Aliki Sagianou, 2022. "Forecasting actuarial time series: a practical study of the effect of statistical pre-adjustments," Working Papers 297, Bank of Greece.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    2. Jian Wang & Jason J. Wu, 2012. "The Taylor Rule and Forecast Intervals for Exchange Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 103-144, February.
    3. Timmermann, Allan & Qu, Ritong & Zhu, Yinchu, 2019. "Do Any Economists Have Superior Forecasting Skills?," CEPR Discussion Papers 14112, C.E.P.R. Discussion Papers.
    4. Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
    5. Peter Reinhard Hansen & Allan Timmermann, 2015. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 17-21, January.
    6. Mariano, Roberto S. & Preve, Daniel, 2012. "Statistical tests for multiple forecast comparison," Journal of Econometrics, Elsevier, vol. 169(1), pages 123-130.
    7. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    8. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    9. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    10. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    11. Tanya Molodtsova & Alex Nikolsko-Rzhevskyy & David H. Papell, 2011. "Taylor Rules and the Euro," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43, pages 535-552, March.
    12. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    13. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    14. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    15. Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024. "Inference on Winners," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
    16. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    17. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
    18. Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
    19. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    20. Alvaro Escribano & Genaro Sucarrat, 2011. "Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations," Working Papers 2011-09, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.

    More about this item

    Keywords

    applied time series analysis; time series «linearization»; time series transformation; outliers; forecasting of macroeconomic time series.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bog:wpaper:280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anastasios Rizos (email available below). General contact details of provider: https://edirc.repec.org/data/boggvgr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.