IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v14y2004i4p265-278.html
   My bibliography  Save this article

The importance of variance stationarity in economic time series modelling. A practical approach

Author

Listed:
  • Alexandros Milionis

Abstract

Although non-stationarity in the level of a time series is always tested (and there is a variety of tests for this purpose), non-stationarity in the variance is sometimes neglected in applied research. In this work, the consequences of neglecting variance non-stationarity in financial time series, and the conceptual difference between variance non-stationarity and conditional variance are discussed. An ad hoc method for testing and correcting for variance non-stationarity is suggested. It is shown that the presence of variance non-stationarity leads to misspecified univariate ARIMA models and correcting for it, the number of model parameters is vastly reduced. Implications for the tests of the hypothesis of weak form market efficiency (WFME) are discussed. More specifically it is argued that the usual autocorrelation tests are inappropriate when based on the differences of asset prices. Finally, it is shown how the analysis of outliers is affected by the presence of variance non-stationarity.

Suggested Citation

  • Alexandros Milionis, 2004. "The importance of variance stationarity in economic time series modelling. A practical approach," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 265-278.
  • Handle: RePEc:taf:apfiec:v:14:y:2004:i:4:p:265-278
    DOI: 10.1080/0960310042000201200
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0960310042000201200
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0960310042000201200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandros E. Milionis & Nikolaos G. Galanopoulos & Peter Hatzopoulos & Aliki Sagianou, 2022. "Forecasting actuarial time series: a practical study of the effect of statistical pre-adjustments," Working Papers 297, Bank of Greece.
    2. Alexandros E. Milionis & Nikolaos G. Galanopoulos, 2020. "A study of the effect of data transformation and «linearization» on time series forecasts. A practical approach," Working Papers 280, Bank of Greece.
    3. Alexandros E. Milionis & Nikolaos G. Galanopoulos, 2018. "Time series with interdependent level and second moment: statistical testing and applications with Greek external trade and simulated data," Working Papers 246, Bank of Greece.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:14:y:2004:i:4:p:265-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.