IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v36y2020i4p1517-1530.html
   My bibliography  Save this article

Linking words in economic discourse: Implications for macroeconomic forecasts

Author

Listed:
  • Aromi, J. Daniel

Abstract

This paper develops indicators of unstructured press information by exploiting word vector representations. A model is trained using a corpus covering 90 years of Wall Street Journal content. The information content of the indicators is assessed through business cycle forecast exercises. The vector representations can learn meaningful word associations that are exploited to construct indicators of uncertainty. In-sample and out-of-sample forecast exercises show that the indicators contain valuable information regarding future economic activity. The combination of indices associated with different subjective states (e.g., uncertainty, fear, pessimism) results in further gains in information content. The documented performance is unmatched by previous dictionary-based word counting techniques proposed in the literature.

Suggested Citation

  • Aromi, J. Daniel, 2020. "Linking words in economic discourse: Implications for macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1517-1530.
  • Handle: RePEc:eee:intfor:v:36:y:2020:i:4:p:1517-1530
    DOI: 10.1016/j.ijforecast.2019.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207019302511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2019.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    3. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    4. Delis, Manthos D. & Kouretas, Georgios P. & Tsoumas, Chris, 2014. "Anxious periods and bank lending," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 1-13.
    5. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    6. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
    7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    8. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    9. Barbara Rossi & Tatevik Sekhposyan, 2015. "Macroeconomic Uncertainty Indices Based on Nowcast and Forecast Error Distributions," American Economic Review, American Economic Association, vol. 105(5), pages 650-655, May.
    10. Jon Faust & Simon Gilchrist & Jonathan H. Wright & Egon Zakrajšsek, 2013. "Credit Spreads as Predictors of Real-Time Economic Activity: A Bayesian Model-Averaging Approach," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1501-1519, December.
    11. Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
    12. Stekler, Herman & Symington, Hilary, 2016. "Evaluating qualitative forecasts: The FOMC minutes, 2006–2010," International Journal of Forecasting, Elsevier, vol. 32(2), pages 559-570.
    13. Alexopoulos, Michelle & Cohen, Jon, 2015. "The power of print: Uncertainty shocks, markets, and the economy," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 8-28.
    14. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    15. Nathan S. Balke & Michael Fulmer & Ren Zhang, 2017. "Incorporating the Beige Book into a Quantitative Index of Economic Activity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 497-514, August.
    16. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Daniel Aromí, 2022. "Medición de Incertidumbre Económica en Redes Sociales en Base a Modelos de Procesamiento de Lenguaje Natural," Working Papers 179, Red Nacional de Investigadores en Economía (RedNIE).
    2. J. Daniel Aromí & Martín Llada, 2024. "Are professional forecasters inattentive to public discussions about inflation? The case of Argentina," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2572-2587, November.
    3. J. Daniel Aromí & Martín Llada, 2020. "Forecasting inflation with twitter," Asociación Argentina de Economía Política: Working Papers 4308, Asociación Argentina de Economía Política.
    4. Dooruj Rambaccussing & Craig Menzies & Andrzej Kwiatkowski, 2022. "Look who’s Talking: Individual Committee members’ impact on inflation expectations," Dundee Discussion Papers in Economics 305, Economic Studies, University of Dundee.
    5. Oscar Claveria, 2021. "Disagreement on expectations: firms versus consumers," SN Business & Economics, Springer, vol. 1(12), pages 1-23, December.
    6. J. Daniel Aromí & Martín Llada, 2024. "Are professional forecasters inattentive to public discussions? The case of inflation in Argentina," Working Papers 300, Red Nacional de Investigadores en Economía (RedNIE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    2. Sharpe, Steven A. & Sinha, Nitish R. & Hollrah, Christopher A., 2023. "The power of narrative sentiment in economic forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1097-1121.
    3. John Garcia, 2021. "Analyst herding and firm-level investor sentiment," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 461-494, December.
    4. Luiz Renato Lima & Lucas Lúcio Godeiro & Mohammed Mohsin, 2021. "Time-Varying Dictionary and the Predictive Power of FED Minutes," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 149-181, January.
    5. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    6. Bonsall, Samuel B. & Green, Jeremiah & Muller, Karl A., 2020. "Market uncertainty and the importance of media coverage at earnings announcements," Journal of Accounting and Economics, Elsevier, vol. 69(1).
    7. Caldara, Dario & Fuentes-Albero, Cristina & Gilchrist, Simon & Zakrajšek, Egon, 2016. "The macroeconomic impact of financial and uncertainty shocks," European Economic Review, Elsevier, vol. 88(C), pages 185-207.
    8. Beckmann, Joscha & Czudaj, Robert L. & Murach, Michael, 2024. "Macroeconomic Effects from Media Coverage of the China-U.S. Trade War on selected EU Countries," MPRA Paper 121751, University Library of Munich, Germany.
    9. Yuting Chen & Don Bredin & Valerio Potì & Roman Matkovskyy, 2022. "COVID risk narratives: a computational linguistic approach to the econometric identification of narrative risk during a pandemic," Digital Finance, Springer, vol. 4(1), pages 17-61, March.
    10. Youngjoon Lee & Soohyon Kim & Ki Young Park, 2018. "Deciphering Monetary Policy Committee Minutes with Text Mining Approach: A Case of South Korea," Working papers 2018rwp-132, Yonsei University, Yonsei Economics Research Institute.
    11. Gu, Chen & Chen, Denghui & Stan, Raluca & Shen, Aizhong, 2022. "It is not just What you say, but How you say it: Why tonality matters in central bank communication," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 216-231.
    12. Ilias Filippou & James Mitchell & My T. Nguyen, 2023. "The FOMC versus the Staff: Do Policymakers Add Value in Their Tales?," Working Papers 23-20, Federal Reserve Bank of Cleveland.
    13. Kawamura, Kohei & Kobashi, Yohei & Shizume, Masato & Ueda, Kozo, 2019. "Strategic central bank communication: Discourse analysis of the Bank of Japan’s Monthly Report," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 230-250.
    14. Narayan, Paresh Kumar & Bannigidadmath, Deepa & Narayan, Seema, 2021. "How much does economic news influence bilateral exchange rates?," Journal of International Money and Finance, Elsevier, vol. 115(C).
    15. Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    16. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Perez & Elena Vidal, 2024. "Using Newspapers for Textual Indicators: Guidance Based on Spanish- and Portuguese-Speaking Countries," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 643-692, August.
    17. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    18. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    19. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    20. repec:hal:spmain:info:hdl:2441/3mgbd73vkp9f9oje7utooe7vpg is not listed on IDEAS
    21. Himounet, Nicolas, 2022. "Searching the nature of uncertainty: Macroeconomic and financial risks VS geopolitical and pandemic risks," International Economics, Elsevier, vol. 170(C), pages 1-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:36:y:2020:i:4:p:1517-1530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.