IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/557.html
   My bibliography  Save this paper

A Simple Ordered Data Estimator For Inverse Density Weighted Functions

Author

Listed:
  • Arthur Lewbel

    (Boston College)

  • Susanne M. Schennach

    (University of Chicago)

Abstract

We consider estimation of means of functions that are scaled by an unknown density, or equivalently, integrals of conditional expectations. The "ordered data" estimator we provide is root n consistent, asymptotically normal, and is numerically extremely simple, involving little more than ordering the data and summing the results. No sample size dependent smoothing is required. A similarly simple estimator is provided for the limiting variance. The proofs include new limiting distribution results for functions of nearest neighbor spacings. Potential applications include endogeneous binary choice, willingness to pay, selection, and treatment models.

Suggested Citation

  • Arthur Lewbel & Susanne M. Schennach, 2003. "A Simple Ordered Data Estimator For Inverse Density Weighted Functions," Boston College Working Papers in Economics 557, Boston College Department of Economics, revised 01 May 2005.
  • Handle: RePEc:boc:bocoec:557
    Note: Previously circulated as "A Simple Ordered Data Estimator for Inverse Density Weighted Expectations"
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/EC-P/wp557.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mack, Y. P. & Müller, Hans-Georg, 1988. "Convolution type estimators for nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 7(3), pages 229-239, December.
    2. repec:cup:etheor:v:13:y:1997:i:1:p:32-51 is not listed on IDEAS
    3. Arthur Lewbel, 1998. "Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors," Econometrica, Econometric Society, vol. 66(1), pages 105-122, January.
    4. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    5. Lewbel, Arthur, 1997. "Semiparametric Estimation of Location and Other Discrete Choice Moments," Econometric Theory, Cambridge University Press, vol. 13(1), pages 32-51, February.
    6. Denis Cogneau & Eric Maurin, 2001. "Parental Income and School Attendance in a Low-Income Country : A Semi-parametric Analysis," Working Papers 2001-08, Center for Research in Economics and Statistics.
    7. Thierry Magnac & Eric Maurin, 2003. "Identification et Information in Monotone Binary Models," Working Papers 2003-07, Center for Research in Economics and Statistics.
    8. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    9. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    10. Whitney K. Newey and Paul A. Ruud., 1994. "Density Weighted Linear Least Squares," Economics Working Papers 94-228, University of California at Berkeley.
    11. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    12. Barbe, Philippe, 1994. "Joint approximation of processes based on spacings and order statistics," Stochastic Processes and their Applications, Elsevier, vol. 53(2), pages 339-349, October.
    13. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
    14. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    15. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    16. Yatchew, A., 1997. "An elementary estimator of the partial linear model," Economics Letters, Elsevier, vol. 57(2), pages 135-143, December.
    17. Daniel McFadden, 1996. "Computing Willingness-to-Pay in Random Utility Models," Working Papers _011, University of California at Berkeley, Econometrics Laboratory Software Archive.
    18. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amaresh K. Tiwari & Pierre Mohnen & Franz C. Palm & Sybrand Schim Loeff, 2008. "Financial Constraint and R&D Investment: Evidence from CIS," Palgrave Macmillan Books, in: Cees Beers & Alfred Kleinknecht & Roland Ortt & Robert Verburg (ed.), Determinants of Innovative Behaviour, chapter 10, pages 217-242, Palgrave Macmillan.
    2. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    3. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 45(3), pages 809-829, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lewbel, Arthur & Schennach, Susanne M., 2007. "A simple ordered data estimator for inverse density weighted expectations," Journal of Econometrics, Elsevier, vol. 136(1), pages 189-211, January.
    2. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    3. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    4. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    5. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    6. Chu, Ba & Jacho-Chávez, David T., 2012. "k-NEAREST NEIGHBOR ESTIMATION OF INVERSE-DENSITY-WEIGHTED EXPECTATIONS WITH DEPENDENT DATA," Econometric Theory, Cambridge University Press, vol. 28(4), pages 769-803, August.
    7. Arthur Lewbel, 2012. "An Overview of the Special Regressor Method," Boston College Working Papers in Economics 810, Boston College Department of Economics.
    8. Arthur Lewbel, 2005. "Simple Endogenous Binary Choice and Selection Panel Model Estimators," Boston College Working Papers in Economics 613, Boston College Department of Economics, revised 04 Sep 2006.
    9. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    10. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    11. Chen, Songnian & Khan, Shakeeb & Tang, Xun, 2016. "Informational content of special regressors in heteroskedastic binary response models," Journal of Econometrics, Elsevier, vol. 193(1), pages 162-182.
    12. Bo E. Honore & Arthur Lewbel, 2002. "Semiparametric Binary Choice Panel Data Models Without Strictly Exogeneous Regressors," Econometrica, Econometric Society, vol. 70(5), pages 2053-2063, September.
    13. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Viewpoint: Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics, Canadian Economics Association, vol. 45(3), pages 809-829, August.
    14. Arthur Lewbel, 2000. "Asymptotic Trimming for Bounded Density Plug-in Estimators," Boston College Working Papers in Economics 479, Boston College Department of Economics, revised 30 Oct 2000.
    15. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 45(3), pages 809-829, August.
    16. Lewbel, Arthur & Tang, Xun, 2015. "Identification and estimation of games with incomplete information using excluded regressors," Journal of Econometrics, Elsevier, vol. 189(1), pages 229-244.
    17. Arthur Lewbel & Linton, Oliver Linton, 1998. "Nonparametric Censored Regression," Cowles Foundation Discussion Papers 1186, Cowles Foundation for Research in Economics, Yale University.
    18. Fahs, Rafic & Cardell, N. Scott & Mittelhammer, Ronald C., 2001. "Semiparametric Estimation and Inference in Multinomial Choice Models," 2001 Annual meeting, August 5-8, Chicago, IL 20742, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Diarra, Lacina & Dessy, Sylvain, 2018. "Land Tenure Security and Non-Agricultural Sector Employment: Household-level Evidence from Uganda," 2018 Annual Meeting, August 5-7, Washington, D.C. 274240, Agricultural and Applied Economics Association.
    20. Arthur Lewbel, 2002. "Ordered Response Threshold Estimation," Boston College Working Papers in Economics 535, Boston College Department of Economics, revised 29 Oct 2003.

    More about this item

    Keywords

    Semiparametric; Conditional Expectation; Density Estimation; Binary Choice; Binomial Response;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debocus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.