Probability of Default (PD) Model to Estimate Ex Ante Credit Risk
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Anna Burova & Henry Penikas & Svetlana Popova, 2021. "Probability of Default Model to Estimate Ex Ante Credit Risk," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 49-72, September.
References listed on IDEAS
- Mite Miteski & Ana Mitreska & Mihajlo Vaskov, 2019.
"The risk-taking channel of monetary policy in Macedonia: evidence from credit registry data,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49,
Bank for International Settlements.
- Mite Miteski & Ana Mitreska & Mihajlo Vaskov, 2018. "The Risk-Taking Channel of Monetary Policy in Macedonia: Evidence from Credit Registry Data," Working Papers 2018-07, National Bank of the Republic of North Macedonia.
- Bruno, Valentina & Shin, Hyun Song, 2015.
"Capital flows and the risk-taking channel of monetary policy,"
Journal of Monetary Economics, Elsevier, vol. 71(C), pages 119-132.
- Valentina Bruno & Hyun Song Shin, 2012. "Capital Flows and the Risk-Taking Channel of Monetary Policy," BIS Working Papers 400, Bank for International Settlements.
- Valentina Bruno & Hyun Song Shin, 2013. "Capital Flows and the Risk-Taking Channel of Monetary Policy," NBER Working Papers 18942, National Bureau of Economic Research, Inc.
- Andrikopoulos, Panagiotis & Khorasgani, Amir, 2018. "Predicting unlisted SMEs' default: Incorporating market information on accounting-based models for improved accuracy," The British Accounting Review, Elsevier, vol. 50(5), pages 559-573.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- B. Luppi & M. Marzo & E. Scorcu, 2007. "A credit risk model for Italian SMEs," Working Papers 600, Dipartimento Scienze Economiche, Universita' di Bologna.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
- Denis Shibitov & Mariam Mamedli, 2019. "The finer points of model comparison in machine learning: forecasting based on russian banks’ data," Bank of Russia Working Paper Series wps43, Bank of Russia.
- Anna Burova, 2022.
"Measuring the Debt Service Ratio in Russia: A Micro-Level Data Approach,"
Russian Journal of Money and Finance, Bank of Russia, vol. 81(3), pages 72-88, September.
- Anna Burova, 2020. "Measuring the Debt Service Ratio in Russia: micro-level data approach," Bank of Russia Working Paper Series wps55, Bank of Russia.
- Stephen G. Cecchetti & Lianfa Li, 2008.
"Do Capital Adequacy Requirements Matter For Monetary Policy?,"
Economic Inquiry, Western Economic Association International, vol. 46(4), pages 643-659, October.
- Stephen G. Cecchetti & Lianfi Li, 2005. "Do Capital Adequacy Requirements Matter for Monetary Policy?," NBER Working Papers 11830, National Bureau of Economic Research, Inc.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
- Dean Fantazzini & Silvia Figini, 2009. "Random Survival Forests Models for SME Credit Risk Measurement," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 29-45, March.
- Zhivaikina, A. & Peresetsky, A., 2017. "Russian Bank Credit Ratings and Bank License Withdrawal 2012-2016," Journal of the New Economic Association, New Economic Association, vol. 36(4), pages 49-80.
- Paligorova, Teodora & Santos, João A.C., 2017. "Monetary policy and bank risk-taking: Evidence from the corporate loan market," Journal of Financial Intermediation, Elsevier, vol. 30(C), pages 35-49.
- Pompe, Paul P.M. & Bilderbeek, Jan, 2005. "The prediction of bankruptcy of small- and medium-sized industrial firms," Journal of Business Venturing, Elsevier, vol. 20(6), pages 847-868, November.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- A. Colin Cameron & Pravin K. Trivedi, 2010. "Microeconometrics Using Stata, Revised Edition," Stata Press books, StataCorp LP, number musr.
- Ioannidou, Vasso P. & Penas, María Fabiana, 2010. "Deposit insurance and bank risk-taking: Evidence from internal loan ratings," Journal of Financial Intermediation, Elsevier, vol. 19(1), pages 95-115, January.
- Agata Lozinskaia & Andreas Merikas & Anna Merika & Henry Penikas, 2017. "Determinants of the probability of default: the case of the internationally listed shipping corporations," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(7), pages 837-858, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
- David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
- Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
- Khaled Halteh & Kuldeep Kumar & Adrian Gepp, 2018. "Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk," Risks, MDPI, vol. 6(2), pages 1-13, May.
- Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
- M. Humayun Kabir & Fawzi Laswad, 2014. "The Behaviour of Earnings, Accruals and Impairment Losses of Failed New Zealand Finance Companies," Australian Accounting Review, CPA Australia, vol. 24(3), pages 262-275, September.
- Eric Séverin & David Veganzones, 2021. "Can earnings management information improve bankruptcy prediction models?," Annals of Operations Research, Springer, vol. 306(1), pages 247-272, November.
- Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Jie Sun & Jie Li & Hamido Fujita & Wenguo Ai, 2023. "Multiclass financial distress prediction based on one‐versus‐one decomposition integrated with improved decision‐directed acyclic graph," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1167-1186, August.
- Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
- Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
- Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
- Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
- Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
- E. Fedorova A. & M. Chukhlantseva A. & D. Chekrizov V. & ЕЛЕНА Федорова АНАТОЛЬЕВНА & МАРИЯ Чухланцева АЛЕКСАНДРОВНА & ДМИТРИЙ Чекризов ВАСИЛЬЕВИЧ, 2017. "Нормативные значения коэффициентов финансовой устойчивости: особенности видов экономической деятельности // Normative Values of Financial Stability Ratios: Industry-Specific Features," Управленческие науки // Management Science, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 7(2), pages 44-55.
- Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
More about this item
Keywords
ex ante probability of default; corporate credit; credit registry; probability of default mode; credit quality groups; credit spreads;All these keywords.
JEL classification:
- E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
- E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers
- E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
- E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2021-03-01 (Banking)
- NEP-CFN-2021-03-01 (Corporate Finance)
- NEP-MAC-2021-03-01 (Macroeconomics)
- NEP-RMG-2021-03-01 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:wpaper:wps66. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: BoR Research (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.