IDEAS home Printed from https://ideas.repec.org/p/bfr/decfin/36.html
   My bibliography  Save this paper

Why do insurers fail? A comparison of life and non-life insolvencies using a new international database
[Les déterminants des défaillances en assurance : comparaison entre les secteurs de l’assurance à partir d’une nouvelle base de données internationale]

Author

Listed:
  • Olivier de Bandt
  • George Overton

Abstract

Plantin & Rochet (2016) document how insurers often engage in risk-shifting years before the materialization of a failure. This paper empirically examines this claim by testing the mechanisms of insurance insolvency, using a first-of-its-kind international database assembled by the authors which merges data on balance sheet and income statements together with information on impairments over the last 30 years in four big countries (France, Japan, the UK and the US). Employing different fixed effects logistic specifications and parametric survival models, the paper presents evidence of profitability as a leading indicator of failures, as well as the higher likelihood of failure by smaller firms. In addition, there is an intrinsic asymmetry between the life and non-life insurance sectors. In the life sector, asset mix is highly significant in predicting an impairment, while operating inefficiency plays no role. In the non-life sector, the opposite proves true. Plantin et Rochet (2007) étudient comment la survenance de la défaillance d’une entreprise d’assurance fait souvent suite à une prise de risque excessive plusieurs années avant l’événement. L’article examine empiriquement cette affirmation en testant les déterminants de la solvabilité des assurances. Il mobilise pour cela une base de données internationale, la première du genre, assemblée par les auteurs. La base intègre à la fois des informations sur les défaillances et des données de bilan et de compte de résultat sur les 30 dernières années dans quatre grands pays (France, Japon, Royaume-Uni et États-Unis). En utilisant différents modèles logistiques à effets fixes et des modèles de survie paramétriques, l'article montre comment la rentabilité constitue un indicateur avancé des défaillances et que la probabilité de défaut est plus élevée pour les entreprises d’assurance de petite taille. En outre, il existe une asymétrie intrinsèque entre les secteurs de l'assurance vie et de l'assurance non-vie. Dans le secteur de l'assurance-vie, la composition des actifs est très importante pour prédire une défaillance, tandis que l'inefficacité opérationnelle ne joue aucun rôle. Dans le secteur non-vie, les données disponibles indiquent que le contraire est vrai.

Suggested Citation

  • Olivier de Bandt & George Overton, 2020. "Why do insurers fail? A comparison of life and non-life insolvencies using a new international database [Les déterminants des défaillances en assurance : comparaison entre les secteurs de l’assuran," Débats économiques et financiers 36, Banque de France.
  • Handle: RePEc:bfr:decfin:36
    as

    Download full text from publisher

    File URL: https://acpr.banque-france.fr/sites/default/files/medias/documents/20201125_def_36.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leverty, J. Tyler & Grace, Martin F., 2010. "The robustness of output measures in property-liability insurance efficiency studies," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1510-1524, July.
    2. Bernard, R. & Point, E. & Valade, P. & Yang, C., 2016. "Indicateurs de risque et vulnérabilités en assurance sur données historiques," Analyse et synthèse 67, Banque de France.
    3. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
    4. Cummins, J. David & Harrington, Scott E. & Klein, Robert, 1995. "Insolvency experience, risk-based capital, and prompt corrective action in property-liability insurance," Journal of Banking & Finance, Elsevier, vol. 19(3-4), pages 511-527, June.
    5. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    6. Darrell Leadbetter & Suela Dibra, 2008. "Why Insurers Fail: The Dynamics of Property and Casualty Insurance Insolvency in Canada," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 33(3), pages 464-488, July.
    7. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    8. David T. Russell & Stephen G. Fier & James M. Carson & Randy E. Dumm, 2013. "An Empirical Analysis of Life Insurance Policy Surrender Activity," Journal of Insurance Issues, Western Risk and Insurance Association, vol. 36(1), pages 35-57.
    9. Li Zhang & Norma Nielson, 2015. "Solvency Analysis And Prediction In Property–Casualty Insurance: Incorporating Economic And Market Predictors," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 82(1), pages 97-124, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henri Fraisse & Christophe Hurlin, 2024. "Modèles internes des banques pour le calcul du capital réglementaire (IRB) et intelligence artificielle," Débats économiques et financiers 44, Banque de France.
    2. Eric Monnet, & Angelo Riva, & Stefano Ungaro., 2021. "The Real Effects of Bank Runs. Evidence from the French Great Depression (1930-1931) [Les effets réels des ruées bancaires : l’exemple de la Grande Dépression en France (1930-1931)]," Débats économiques et financiers 37, Banque de France.
    3. Subramanian, Ajay & Wang, Jinjing, 2021. "Capital, aggregate risk, insurance prices and regulation," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 156-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier de Bandt & George Overton, 2022. "Why do insurers fail? A comparison of life and nonlife insurance companies from an international database," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 871-905, December.
    2. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
    3. Doherty, Neil A. & Kartasheva, Anastasia V. & Phillips, Richard D., 2012. "Information effect of entry into credit ratings market: The case of insurers' ratings," Journal of Financial Economics, Elsevier, vol. 106(2), pages 308-330.
    4. Leverty, J. Tyler & Grace, Martin F., 2018. "Do elections delay regulatory action?," Journal of Financial Economics, Elsevier, vol. 130(2), pages 409-427.
    5. Huong Dang, 2014. "A Competing Risks Dynamic Hazard Approach to Investigate the Insolvency Outcomes of Property-Casualty Insurers," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 39(1), pages 42-76, January.
    6. Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
    7. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    8. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    9. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    10. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    11. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    12. Zhang, Wei, 2015. "R&D investment and distress risk," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 94-114.
    13. Fougère, D. & Golfier, C. & Horny, G. & Kremp, E., 2013. "What has been the impact of the 2008 crisis on firms’ default? (in French)," Working papers 463, Banque de France.
    14. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    15. Martin F. Grace & J. Tyler Leverty, 2010. "Political Cost Incentives for Managing the Property‐Liability Insurer Loss Reserve," Journal of Accounting Research, Wiley Blackwell, vol. 48(1), pages 21-49, March.
    16. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    17. Koke, Jens, 2002. "Determinants of acquisition and failure: evidence from corporate Germany," Structural Change and Economic Dynamics, Elsevier, vol. 13(4), pages 457-484, December.
    18. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    19. Michael Halling & Evelyn Hayden, 2008. "Bank failure prediction: a two-step survival time approach," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The IFC's contribution to the 56th ISI Session, Lisbon, August 2007, volume 28, pages 48-73, Bank for International Settlements.
    20. Elizabeth Demers & Philip Joos, 2007. "IPO Failure Risk," Journal of Accounting Research, Wiley Blackwell, vol. 45(2), pages 333-371, May.

    More about this item

    Keywords

    Insolvency Prediction; Insurance Default; Financial Crises;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G01 - Financial Economics - - General - - - Financial Crises
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:decfin:36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.