IDEAS home Printed from https://ideas.repec.org/p/bep/uwabio/1050.html
   My bibliography  Save this paper

Marginal Modeling of Multilevel Binary Data with Time-Varying Covariates

Author

Listed:
  • Diana Miglioretti

    (Group Health Cooperative)

  • Patrick Heagerty

    (University of Washington)

Abstract

We propose and compare two approaches for regression analysis of multilevel binary data when clusters are not necessarily nested: a GEE method that relies on a working independence assumption coupled with a three-step method for obtaining empirical standard errors; and a likelihood-based method implemented using Bayesian computational techniques. Implications of time-varying endogenous covariates are addressed. The methods are illustrated using data from the Breast Cancer Surveillance Consortium to estimate mammography accuracy from a repeatedly screened population.

Suggested Citation

  • Diana Miglioretti & Patrick Heagerty, 2004. "Marginal Modeling of Multilevel Binary Data with Time-Varying Covariates," UW Biostatistics Working Paper Series 1050, Berkeley Electronic Press.
  • Handle: RePEc:bep:uwabio:1050
    Note: oai:bepress.com:uwbiostat-1050
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1050&context=uwbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicole Mayer-Hamblett & Steve Self, 2001. "A Regression Modeling Approach for Describing Patterns of HIV Genetic Variation," Biometrics, The International Biometric Society, vol. 57(2), pages 449-460, June.
    2. Germán Rodríguez & Noreen Goldman, 2001. "Improved estimation procedures for multilevel models with binary response: a case‐study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(2), pages 339-355.
    3. Lloyd A. Mancl & Timothy A. DeRouen, 2001. "A Covariance Estimator for GEE with Improved Small‐Sample Properties," Biometrics, The International Biometric Society, vol. 57(1), pages 126-134, March.
    4. Justine Shults & Ardythe L. Morrow, 2002. "Use of Quasi–Least Squares to Adjust for Two Levels of Correlation," Biometrics, The International Biometric Society, vol. 58(3), pages 521-530, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    2. Loni Philip Tabb & Eric J. Tchetgen Tchetgen & Greg A. Wellenius & Brent A. Coull, 2016. "Marginalized Zero-Altered Models for Longitudinal Count Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 181-203, October.
    3. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.
    4. Lee, Keunbaik & Mercante, Donald, 2010. "Longitudinal nominal data analysis using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 208-218, January.
    5. Keunbaik Lee & Sanggil Kang & Xuefeng Liu & Daekwan Seo, 2011. "Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1577-1590, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weible, Daniela & Salamon, Petra & Christoph-Schulz, Inken B. & Peter, Guenter, 2013. "How do political, individual and contextual factors affect school milk demand? Empirical evidence from primary schools in Germany," Food Policy, Elsevier, vol. 43(C), pages 148-158.
    2. Justine Shults & Sarah J. Ratcliffe & Mary Leonard, 2007. "Improved generalized estimating equation analysis via xtqls for quasi-least squares in Stata," Stata Journal, StataCorp LP, vol. 7(2), pages 147-166, June.
    3. Guillaume Horny & Dragana Djurdjevic & Bernhard Boockmann & François Laisney, 2008. "Bayesian Estimation of Cox Models with Non-nested Random Effects: an Application to the Ratification Of ILO Conventions by Developing Countries," Annals of Economics and Statistics, GENES, issue 89, pages 193-214.
    4. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    5. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    6. Westgate, Philip M., 2013. "A bias-corrected covariance estimator for improved inference when using an unstructured correlation with quadratic inference functions," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1553-1558.
    7. You-Gan Wang & Yuning Zhao, 2007. "A Modified Pseudolikelihood Approach for Analysis of Longitudinal Data," Biometrics, The International Biometric Society, vol. 63(3), pages 681-689, September.
    8. Getinet A. Haile, 2015. "Workplace Job Satisfaction in Britain: Evidence from Linked Employer–Employee Data," LABOUR, CEIS, vol. 29(3), pages 225-242, September.
    9. Haiyan Wang & Michael Akritas, 2010. "Inference from heteroscedastic functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 149-168.
    10. Paniagua, Victoria, 2022. "When clients vote for brokers: How elections improve public goods provision in urban slums," World Development, Elsevier, vol. 158(C).
    11. Galea, Manuel & de Castro, Mário, 2017. "Robust inference in a linear functional model with replications using the t distribution," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 134-145.
    12. Seonho Shin, 2021. "Were they a shock or an opportunity?: The heterogeneous impacts of the 9/11 attacks on refugees as job seekers—a nonlinear multi-level approach," Empirical Economics, Springer, vol. 61(5), pages 2827-2864, November.
    13. Michael Eichinger & Tatiana Görig & Sabine Georg & Dorle Hoffmann & Diana Sonntag & Heike Philippi & Jochem König & Michael S. Urschitz & Freia De Bock, 2022. "Evaluation of a Complex Intervention to Strengthen Participation-Centred Care for Children with Special Healthcare Needs: Protocol of the Stepped Wedge Cluster Randomised PART-CHILD Trial," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    14. Fan, Chunpeng & Zhang, Donghui, 2014. "Wald-type rank tests: A GEE approach," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 1-16.
    15. Dana A. Glei & Noreen Goldman & German Rodriguez, 2002. "Utilization of Care During Pregnancy in Rural Guatemala: Does Obstetrical Need Matters," Working Papers 308, Princeton University, Woodrow Wilson School of Public and International Affairs, Office of Population Research..
    16. Francis L. Huang, 2022. "Analyzing Cross-Sectionally Clustered Data Using Generalized Estimating Equations," Journal of Educational and Behavioral Statistics, , vol. 47(1), pages 101-125, February.
    17. Masahiko Gosho & Hisashi Noma & Kazushi Maruo, 2021. "Practical Review and Comparison of Modified Covariance Estimators for Linear Mixed Models in Small‐sample Longitudinal Studies with Missing Data," International Statistical Review, International Statistical Institute, vol. 89(3), pages 550-572, December.
    18. Jennifer Broatch & Sharon Lohr, 2012. "Multidimensional Assessment of Value Added by Teachers to Real-World Outcomes," Journal of Educational and Behavioral Statistics, , vol. 37(2), pages 256-277, April.
    19. Michael P. Fay & Barry I. Graubard, 2001. "Small-Sample Adjustments for Wald-Type Tests Using Sandwich Estimators," Biometrics, The International Biometric Society, vol. 57(4), pages 1198-1206, December.
    20. Saskia Litière & Ariel Alonso & Geert Molenberghs, 2007. "Type I and Type II Error Under Random-Effects Misspecification in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(4), pages 1038-1044, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:uwabio:1050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.