A neural network architecture for data editing in the Bank of Italy�s business surveys
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- John Creedy & Vance L. Martin (ed.), 1997. "Nonlinear Economic Models," Books, Edward Elgar Publishing, number 1314.
- Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gelhausen, Marc Christopher, 2007. "A Generalized Neural Logit Model for Airport and Access Mode Choice in Germany," MPRA Paper 4313, University Library of Munich, Germany, revised 2007.
- Reinhold Decker, 2014. "Real-Time Analysis of Online Product Reviews by Means of Multi-Layer Feed-Forward Neural Networks," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 4(11), pages 60-70, November.
- Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
- Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
- Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
- Meisam Moghimbeygi & Anahita Nodehi, 2022. "Multinomial Principal Component Logistic Regression on Shape Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 578-599, November.
- Youssef M. Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2021. "Discrete Choice Analysis with Machine Learning Capabilities," Papers 2101.10261, arXiv.org.
- Hruschka, Harald & Fettes, Werner & Probst, Markus, 2004. "An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications," European Journal of Operational Research, Elsevier, vol. 159(1), pages 166-180, November.
- Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D. S. Prasada, 2007.
"Estimating and Combining National Income Distributions Using Limited Data,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 97-109, January.
- D.S. Prasada Rao & Duangkamon Chotikapanich & William E. Griffiths, 2004. "Estimating and Combining National Income Distributions using Limited Data," Econometric Society 2004 Australasian Meetings 213, Econometric Society.
- Duangkamon Chotikapanich & William E. Griffiths & D.S. Prasada Rao, 2005. "Estimating and Combining National Income Distributions using Limited Data," Department of Economics - Working Papers Series 926, The University of Melbourne.
- Ali, Azam & Kalatian, Arash & Choudhury, Charisma F., 2023. "Comparing and contrasting choice model and machine learning techniques in the context of vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
- Phillips, Paul & Zigan, Krystin & Santos Silva, Maria Manuela & Schegg, Roland, 2015. "The interactive effects of online reviews on the determinants of Swiss hotel performance: A neural network analysis," Tourism Management, Elsevier, vol. 50(C), pages 130-141.
- Christian A. Johnson & Rodrigo Vergara, 2005.
"The implementation of monetary policy in an emerging economy: the case of Chile,"
Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 20(1), pages 45-62, June.
- Christian A Johnson & Rodrigo Vergara, 2005. "The Implementation of Monetary Policy in an Emerging Economy: The Case of Chile," Documentos de Trabajo 291, Instituto de Economia. Pontificia Universidad Católica de Chile..
- Arkoudi, Ioanna & Krueger, Rico & Azevedo, Carlos Lima & Pereira, Francisco C., 2023. "Combining discrete choice models and neural networks through embeddings: Formulation, interpretability and performance," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
- Yafei Han & Francisco Camara Pereira & Moshe Ben-Akiva & Christopher Zegras, 2020. "A Neural-embedded Choice Model: TasteNet-MNL Modeling Taste Heterogeneity with Flexibility and Interpretability," Papers 2002.00922, arXiv.org, revised Jul 2022.
- Jose Ignacio Hernandez & Niek Mouter & Sander van Cranenburgh, 2024. "An economically-consistent discrete choice model with flexible utility specification based on artificial neural networks," Papers 2404.13198, arXiv.org.
- Songtao Li & Ruoran Chen & Lijian Yang & Dinglong Huang & Simin Huang, 2020. "Predictive modeling of consumer color preference: Using retail data and merchandise images," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1305-1323, December.
- José Sarabia & Enrique Castillo & Marta Pascual & María Sarabia, 2007. "Bivariate income distributions with lognormal conditionals," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 371-383, December.
- Shenhao Wang & Baichuan Mo & Jinhua Zhao, 2020. "Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks," Papers 2010.11644, arXiv.org.
- Shenhao Wang & Baichuan Mo & Jinhua Zhao, 2019. "Deep Neural Networks for Choice Analysis: Architectural Design with Alternative-Specific Utility Functions," Papers 1909.07481, arXiv.org, revised Apr 2021.
- Wan-Chen Wang & Maria Manuela Santos Silva & Luiz Moutinho, 2016. "Modelling Consumer Responses to Advertising Slogans through Artificial Neural Networks," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 15(2), pages 89-116, December.
More about this item
Keywords
data quality; data editing; binary classification; neural networks; measurement error;All these keywords.
JEL classification:
- C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2007-03-10 (Banking)
- NEP-CMP-2007-03-10 (Computational Economics)
- NEP-NEU-2007-03-10 (Neuroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_612_07. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.