IDEAS home Printed from https://ideas.repec.org/p/bca/bocsan/18-34.html
   My bibliography  Save this paper

Characterizing the Canadian Financial Cycle with Frequency Filtering Approaches

Author

Listed:
  • Andrew Lee-Poy

Abstract

In this note, I use two multivariate frequency filtering approaches to characterize the Canadian financial cycle by capturing fluctuations in the underlying variables with respect to a long-term trend. The first approach is a dynamically weighted composite, and the second is a stochastic cycle model. Applying the two approaches to Canada yields several findings. First, the Canadian financial cycle is more than twice as long as the business cycle, with an amplitude almost four times greater. Second, the overall Canadian financial cycle is most strongly associated with household credit and house prices. Third, while Canadian house prices are mostly associated with the financial cycle, they are also significantly tied to the business cycle. Lastly, house prices are found to lead the overall financial cycle. These results are generally in line with findings for other countries studied in literature. Additionally, I compare each approach’s proneness to revision and find that both are more reliable, when monitored in real time, than the Basel III total credit-to-GDP gap. Nonetheless, further work is encouraged to investigate more variable combinations and undertake a cross-country analysis since data on systemic financial stress in Canada are limited. It should be noted that since the approaches produce a measure of the financial cycle relative to trend, comparison with level indicators (as those monitored in the Bank of Canada’s Financial System Review) is not straightforward.

Suggested Citation

  • Andrew Lee-Poy, 2018. "Characterizing the Canadian Financial Cycle with Frequency Filtering Approaches," Staff Analytical Notes 2018-34, Bank of Canada.
  • Handle: RePEc:bca:bocsan:18-34
    as

    Download full text from publisher

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2018/10/san2018-34.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiebert, Paul & Peltonen, Tuomas A. & Schüler, Yves S., 2015. "Characterising the financial cycle: a multivariate and time-varying approach," Working Paper Series 1846, European Central Bank.
    2. Thibaut Duprey, 2020. "Canadian Financial Stress and Macroeconomic Condition," Canadian Public Policy, University of Toronto Press, vol. 46(S3), pages 236-260, October.
    3. Stremmel, Hanno, 2015. "Capturing the financial cycle in Europe," Working Paper Series 1811, European Central Bank.
    4. Rochelle M. Edge & Ralf R. Meisenzahl, 2011. "The Unreliability of Credit-to-GDP Ratio Gaps in Real Time: Implications for Countercyclical Capital Buffers," International Journal of Central Banking, International Journal of Central Banking, vol. 7(4), pages 261-298, December.
    5. Galati, Gabriele & Hindrayanto, Irma & Koopman, Siem Jan & Vlekke, Marente, 2016. "Measuring financial cycles in a model-based analysis: Empirical evidence for the United States and the euro area," Economics Letters, Elsevier, vol. 145(C), pages 83-87.
    6. Claudio BorioBy & Piti Disyatat & Mikael Juselius, 2017. "Rethinking potential output: embedding information about the financial cycle," Oxford Economic Papers, Oxford University Press, vol. 69(3), pages 655-677.
    7. Moritz Schularick & Alan M. Taylor, 2012. "Credit Booms Gone Bust: Monetary Policy, Leverage Cycles, and Financial Crises, 1870-2008," American Economic Review, American Economic Association, vol. 102(2), pages 1029-1061, April.
    8. Mathias Drehmann & Claudio Borio & Kostas Tsatsaronis, 2012. "Characterising the financial cycle: don't lose sight of the medium term!," BIS Working Papers 380, Bank for International Settlements.
    9. Siem Jan Koopman & João Valle E Azevedo, 2008. "Measuring Synchronization and Convergence of Business Cycles for the Euro area, UK and US," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(1), pages 23-51, February.
    10. Valle e Azevedo, Joao & Koopman, Siem Jan & Rua, Antonio, 2006. "Tracking the Business Cycle of the Euro Area: A Multivariate Model-Based Bandpass Filter," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 278-290, July.
    11. Gerhard Runstler, 2004. "Modelling phase shifts among stochastic cycles," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 232-248, June.
    12. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    13. Borio, Claudio, 2014. "The financial cycle and macroeconomics: What have we learnt?," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 182-198.
    14. Andrew C. Harvey & Thomas M. Trimbur, 2003. "General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 244-255, May.
    15. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, October.
    16. Thibaut Duprey & Timothy Grieder & Dylan Hogg, 2017. "Recent Evolution of Canada’s Credit-to-GDP Gap: Measurement and Interpretation," Staff Analytical Notes 17-25, Bank of Canada.
    17. Òscar Jordà & Moritz Schularick & Alan M Taylor, 2011. "Financial Crises, Credit Booms, and External Imbalances: 140 Years of Lessons," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 59(2), pages 340-378, June.
    18. Mathias Drehmann & Claudio Borio & Kostas Tsatsaronis, 2011. "Anchoring Countercyclical Capital Buffers: The role of Credit Aggregates," International Journal of Central Banking, International Journal of Central Banking, vol. 7(4), pages 189-240, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Bulligan & Lorenzo Burlon & Davide Delle Monache & Andrea Silvestrini, 2019. "Real and financial cycles: estimates using unobserved component models for the Italian economy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 541-569, September.
    2. Dutra, Tiago Mota & Dias, José Carlos & Teixeira, João C.A., 2022. "Measuring financial cycles: Empirical evidence for Germany, United Kingdom and United States of America," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 599-630.
    3. O'Brien, Martin & Velasco, Sofia, 2020. "Unobserved components models with stochastic volatility for extracting trends and cycles in credit," Research Technical Papers 09/RT/20, Central Bank of Ireland.
    4. Gabriele Galati & Irma Hindrayanto & Siem Jan Koopman & Marente Vlekke, 2016. "Measuring financial cycles with a model-based filter: Empirical evidence for the United States and the euro area," DNB Working Papers 495, Netherlands Central Bank, Research Department.
    5. Fernández-Amador, Octavio, 2016. "Finance-augmented business cycles: A robustness check," Papers 1038, World Trade Institute.
    6. Octavio Fernández-Amador & Martin Gächter & Friedrich Sindermann, 2016. "Finance-augmented business cycles: A robustness check," Economics Bulletin, AccessEcon, vol. 36(1), pages 132-144.
    7. Terhi Jokipii & Reto Nyffeler & Stéphane Riederer, 2021. "Exploring BIS credit-to-GDP gap critiques: the Swiss case," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 157(1), pages 1-19, December.
    8. Patrik Kupkovic & Martin Suster, 2020. "Identifying the Financial Cycle in Slovakia," Working and Discussion Papers WP 2/2020, Research Department, National Bank of Slovakia.
    9. Lenarčič, Črt, 2021. "Estimating business and financial cycles in Slovenia," MPRA Paper 109977, University Library of Munich, Germany.
    10. Paolo Guarda & Alban Moura, 2019. "Measuring real and financial cycles in Luxembourg: An unobserved components approach," BCL working papers 126, Central Bank of Luxembourg.
    11. Jorge E. Galán & Javier Mencía, 2021. "Model-based indicators for the identification of cyclical systemic risk," Empirical Economics, Springer, vol. 61(6), pages 3179-3211, December.
    12. Schüler, Yves S. & Hiebert, Paul P. & Peltonen, Tuomas A., 2020. "Financial cycles: Characterisation and real-time measurement," Journal of International Money and Finance, Elsevier, vol. 100(C).
    13. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).
    14. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    15. Mathias Drehmann & James Yetman, 2021. "Which Credit Gap Is Better at Predicting Financial Crises? A Comparison of Univariate Filters," International Journal of Central Banking, International Journal of Central Banking, vol. 17(70), pages 1-31, October.
    16. Jasper de Winter & Siem Jan Koopman & Irma Hindrayanto, 2022. "Joint Decomposition of Business and Financial Cycles: Evidence from Eight Advanced Economies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(1), pages 57-79, February.
    17. Bouvatier, Vincent & Delatte, Anne-Laure & Rehault, Pierre-Nicolas, 2022. "Measuring credit procyclicality: A new database," Emerging Markets Review, Elsevier, vol. 52(C).
    18. Galati, Gabriele & Hindrayanto, Irma & Koopman, Siem Jan & Vlekke, Marente, 2016. "Measuring financial cycles in a model-based analysis: Empirical evidence for the United States and the euro area," Economics Letters, Elsevier, vol. 145(C), pages 83-87.
    19. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    20. Mandler, Martin & Scharnagl, Michael, 2022. "Financial cycles across G7 economies: A view from wavelet analysis," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).

    More about this item

    Keywords

    Business fluctuations and cycles; Econometric and statistical methods; Financial stability; Monetary and financial indicators; Recent economic and financial developments;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E66 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General Outlook and Conditions
    • G01 - Financial Economics - - General - - - Financial Crises
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocsan:18-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bocgvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.