IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/08-15.html
   My bibliography  Save this paper

Mean Ratio Statistic for measuring predictability

Author

Listed:
  • Oliver Linton
  • Katja Smetanina

Abstract

We propose an alternative Ratio Statistic for measuring predictability of stock prices. Our statistic is based on actual returns rather than logarithmic returns and is therefore better suited to capturing price predictability. It captures not only linear dependence in the same way as the variance ratio statistics of Lo and MacKinlay (1988) but also some nonlinear dependencies. We derive the asymptotic distribution of the statistics under the null hypothesis that simple gross returns are unpredictable after a constant mean adjustment. This represents a test of the weak form of the Efficient Market Hypothesis. We also consider the multivariate extension, in particular, we derive the restrictions implied by the EMH on multiperiod portfolio gross returns. We apply our methodology to test the gross return predictability of various financial series.

Suggested Citation

  • Oliver Linton & Katja Smetanina, 2015. "Mean Ratio Statistic for measuring predictability," CeMMAP working papers 08/15, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:08/15
    DOI: 10.1920/wp.cem.2015.0815
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP0815.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2015.0815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    2. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    3. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    4. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    5. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    6. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    7. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    8. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    9. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    10. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Linton & Katja Smetanina, 2015. "Mean Ratio Statistic for measuring predictability," CeMMAP working papers CWP08/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Linton, Oliver & Smetanina, Ekaterina, 2016. "Testing the martingale hypothesis for gross returns," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 664-689.
    3. Haitham A. Al-Zoubi & Aktham Maghyereh, 2007. "Stationary Component in Stock Prices: A Reappraisal of Empirical Findings," Multinational Finance Journal, Multinational Finance Journal, vol. 11(3-4), pages 287-322, September.
    4. Yoon, Byung-Sam & Brorsen, B. Wade, 2005. "Can Multiyear Rollover Hedging Increase Mean Returns?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 37(1), pages 65-78, April.
    5. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    6. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    7. Barrett, Garry F. & Donald, Stephen G. & Hsu, Yu-Chin, 2016. "Consistent tests for poverty dominance relations," Journal of Econometrics, Elsevier, vol. 191(2), pages 360-373.
    8. Toru Kitagawa, 2013. "A bootstrap test for instrument validity in heterogeneous treatment effect models," CeMMAP working papers CWP53/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    10. Khan, Shakeeb & Ponomareva, Maria & Tamer, Elie, 2016. "Identification of panel data models with endogenous censoring," Journal of Econometrics, Elsevier, vol. 194(1), pages 57-75.
    11. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
    12. Bekaert, Geert & Hodrick, Robert J, 1992. "Characterizing Predictable Components in Excess Returns on Equity and Foreign Exchange Markets," Journal of Finance, American Finance Association, vol. 47(2), pages 467-509, June.
    13. Erdos, Péter & Ormos, Mihály, 2010. "Random walk theory and the weak-form efficiency of the US art auction prices," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1062-1076, May.
    14. Amélie Charles & Olivier Darné, 2009. "Variance‐Ratio Tests Of Random Walk: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 503-527, July.
    15. Beare, Brendan K. & Shi, Xiaoxia, 2019. "An improved bootstrap test of density ratio ordering," Econometrics and Statistics, Elsevier, vol. 10(C), pages 9-26.
    16. Bwo-Nung Huang & Chin Yang, 1995. "The fractal structure in multinational stock returns," Applied Economics Letters, Taylor & Francis Journals, vol. 2(3), pages 67-71.
    17. Moon, Seongman & Velasco, Carlos, 2013. "Tests for m-dependence based on sample splitting methods," Journal of Econometrics, Elsevier, vol. 173(2), pages 143-159.
    18. Toru Kitagawa, 2013. "A bootstrap test for instrument validity in heterogeneous treatment effect models," CeMMAP working papers 53/13, Institute for Fiscal Studies.
    19. Cosme Vodounou, 1998. "Inférence fondée sur les statistiques des rendements de long terme," CIRANO Working Papers 98s-20, CIRANO.
    20. Brendan K. Beare & Jackson D. Clarke, 2022. "Modified Wilcoxon-Mann-Whitney tests of stochastic dominance," Papers 2210.08892, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:08/15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.