IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/06-25.html
   My bibliography  Save this paper

Identification of treatment effects under limited exogenous variation

Author

Listed:
  • Whitney K. Newey
  • Sami Stouli

Abstract

Multidimensional heterogeneity and endogeneity are important features of a wide class of econometric models. With control variables to correct for endogeneity, nonparametric identification of treatment effects requires strong support conditions. To alleviate this requirement, we consider varying coefficients specifications for the conditional expectation function of the outcome given a treatment and control variables. This function is expressed as a linear combination of either known functions of the treatment, with unknown coefficients varying with the controls, or known functions of the controls, with unknown coefficients varying with the treatment. We use this modeling approach to give necessary and sufficient conditions for identification of average treatment effects. A sufficient condition for identification is conditional nonsingularity, that the second moment matrix of the known functions given the variable in the varying coefficients is nonsingular with probability one. For known treatment functions with sufficient variation, we find that triangular models with discrete instrument cannot identify average treatment effects when the number of support points for the instrument is less than the number of coefficients. For known functions of the controls, we find that average treatment effects can be identified in general nonseparable triangular models with binary or discrete instruments. We extend our analysis to flexible models of increasing dimension and relate conditional nonsingularity to the full support condition of Imbens and Newey (2009), thereby embedding semi- and non-parametric identification into a common framework.

Suggested Citation

  • Whitney K. Newey & Sami Stouli, 2025. "Identification of treatment effects under limited exogenous variation," CeMMAP working papers 06/25, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:06/25
    DOI: 10.47004/wp.cem.2025.0625
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2025/02/CWP0625-Identification-of-treatment-effects-under-limited-exogenous-variation.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.47004/wp.cem.2025.0625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.
    2. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    3. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, September.
    4. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    5. Laage, Louise, 2024. "A Correlated Random Coefficient panel model with time-varying endogeneity," Journal of Econometrics, Elsevier, vol. 242(2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Whitney K. Newey & Sami Stouli, 2018. "Identification of Treatment Effects under Limited Exogenous Variation," Papers 1811.09837, arXiv.org, revised Jan 2025.
    2. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.
    3. Whitney K. Newey & Sami Stouli, 2018. "Heterogenous coefficients, discrete instruments, and identification of treatment effects," CeMMAP working papers CWP66/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Chesher, Andrew, 2013. "Semiparametric Structural Models Of Binary Response: Shape Restrictions And Partial Identification," Econometric Theory, Cambridge University Press, vol. 29(2), pages 231-266, April.
    5. Hoderlein, Stefan & Holzmann, Hajo & Meister, Alexander, 2017. "The triangular model with random coefficients," Journal of Econometrics, Elsevier, vol. 201(1), pages 144-169.
    6. Kim Kyoo il & Petrin Amil, 2022. "A Generalized Non-Parametric Instrumental Variable-Control Function Approach to Estimation in Nonlinear Settings," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 91-125, January.
    7. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    8. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    9. D’Haultfoeuille, Xavier, 2011. "On The Completeness Condition In Nonparametric Instrumental Problems," Econometric Theory, Cambridge University Press, vol. 27(3), pages 460-471, June.
    10. Chernozhukov, Victor & Fernández-Val, Iván & Newey, Whitney K., 2019. "Nonseparable multinomial choice models in cross-section and panel data," Journal of Econometrics, Elsevier, vol. 211(1), pages 104-116.
    11. Suqin Ge & João Macieira, 2024. "Unobserved Worker Quality and Inter‐Industry Wage Differentials," Journal of Industrial Economics, Wiley Blackwell, vol. 72(1), pages 459-515, March.
    12. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    13. Breen, Richard & Ermisch, John, 2021. "Instrumental Variable Estimation in Demographic Studies: The LATE interpretation of the IV estimator with heterogenous effects," SocArXiv vx9m7, Center for Open Science.
    14. Amit Gandhi & Jeremy T. Fox, 2009. "Identifying Heterogeneity in Economic Choice and Selection Models Using Mixtures," 2009 Meeting Papers 165, Society for Economic Dynamics.
    15. Stefan Hoderlein & Yuya Sasaki, 2013. "Outcome Conditioned Treatment Effects," Boston College Working Papers in Economics 840, Boston College Department of Economics.
    16. Nagasawa, Kenichi, 2020. "Identification and Estimation of Group-Level Partial Effects," The Warwick Economics Research Paper Series (TWERPS) 1243, University of Warwick, Department of Economics.
    17. Gauthier T. Kashalala & Steven F. Koch, 2014. "The Economic Approach to Fertility: A Causal Mediation Analysis," Working Papers 201434, University of Pretoria, Department of Economics.
    18. Gauthier Tshiswaka-Kashalala & Steven F Koch, 2018. "The Demand for Reproductive Health Care," Journal of African Economies, Centre for the Study of African Economies, vol. 27(4), pages 405-429.
    19. Rothe, Christoph, 2010. "Identification of unconditional partial effects in nonseparable models," Economics Letters, Elsevier, vol. 109(3), pages 171-174, December.
    20. Ying-Ying Lee, 2014. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Economics Series Working Papers 706, University of Oxford, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:06/25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.