IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/66-18.html
   My bibliography  Save this paper

Heterogenous coefficients, discrete instruments, and identification of treatment effects

Author

Listed:
  • Whitney K. Newey

    (Institute for Fiscal Studies and MIT)

  • Sami Stouli

    (Institute for Fiscal Studies and University of Bristol)

Abstract

Multidimensional heterogeneity and endogeneity are important features of a wide class of econometric models. We consider heterogenous coefficients models where the outcome is a linear combination of known functions of treatment and heterogenous coefficients. We use control variables to obtain identi cation results for average treatment effects. With discrete instruments in a triangular model we find that average treatment effects cannot be identi ed when the number of support points is less than or equal to the number of coefficients. A sufficient condition for identi fication is that the second moment matrix of the treatment functions given the control is nonsingular with probability one. We relate this condition to identi fication of average treatment effects with multiple treatments.

Suggested Citation

  • Whitney K. Newey & Sami Stouli, 2018. "Heterogenous coefficients, discrete instruments, and identification of treatment effects," CeMMAP working papers CWP66/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:66/18
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/CWP661818.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, September.
    2. Yuichi Kitamura & Jörg Stoye, 2018. "Nonparametric Analysis of Random Utility Models," Econometrica, Econometric Society, vol. 86(6), pages 1883-1909, November.
    3. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    4. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    5. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.
    6. Jerry A. Hausman & Whitney K. Newey, 2016. "Individual Heterogeneity and Average Welfare," Econometrica, Econometric Society, vol. 84, pages 1225-1248, May.
    7. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    8. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    9. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    10. Cai, Zongwu & Das, Mitali & Xiong, Huaiyu & Wu, Xizhi, 2006. "Functional coefficient instrumental variables models," Journal of Econometrics, Elsevier, vol. 133(1), pages 207-241, July.
    11. Alexander Torgovitsky, 2015. "Identification of Nonseparable Models Using Instruments With Small Support," Econometrica, Econometric Society, vol. 83(3), pages 1185-1197, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.
    2. W K Newey & S Stouli, 2022. "Heterogeneous coefficients, control variables and identification of multiple treatment effects [Multivalued treatments and decomposition analysis: An application to the WIA program]," Biometrika, Biometrika Trust, vol. 109(3), pages 865-872.
    3. Feng, Junlong, 2024. "Matching points: Supplementing instruments with covariates in triangular models," Journal of Econometrics, Elsevier, vol. 238(1).
    4. D’Haultfœuille, Xavier & Hoderlein, Stefan & Sasaki, Yuya, 2024. "Testing and relaxing the exclusion restriction in the control function approach," Journal of Econometrics, Elsevier, vol. 240(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.
    2. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    3. Nagasawa, Kenichi, 2020. "Identification and Estimation of Group-Level Partial Effects," The Warwick Economics Research Paper Series (TWERPS) 1243, University of Warwick, Department of Economics.
    4. Hubner, Stefan, 2023. "Identification of unobserved distribution factors and preferences in the collective household model," Journal of Econometrics, Elsevier, vol. 234(1), pages 301-326.
    5. Ming Li, 2021. "Identification and Estimation in a Time-Varying Endogenous Random Coefficient Panel Data Model," Papers 2110.00982, arXiv.org, revised Nov 2024.
    6. Chernozhukov, Victor & Fernández-Val, Iván & Newey, Whitney K., 2019. "Nonseparable multinomial choice models in cross-section and panel data," Journal of Econometrics, Elsevier, vol. 211(1), pages 104-116.
    7. Fernández-Val, Ivan & van Vuuren, Aico & Vella, Francis, 2024. "Nonseparable sample selection models with censored selection rules," Journal of Econometrics, Elsevier, vol. 240(2).
    8. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    9. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    10. Matthew Masten & Alexandre Poirier, 2016. "Partial independence in nonseparable models," CeMMAP working papers CWP26/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Feng, Junlong, 2024. "Matching points: Supplementing instruments with covariates in triangular models," Journal of Econometrics, Elsevier, vol. 238(1).
    12. Amaresh K Tiwari, 2021. "A Control Function Approach to Estimate Panel Data Binary Response Model," Papers 2102.12927, arXiv.org, revised Sep 2021.
    13. Tadao Hoshino, 2021. "Estimating a Continuous Treatment Model with Spillovers: A Control Function Approach," Papers 2112.15114, arXiv.org, revised Jan 2023.
    14. Christophe Bruneel-Zupanc, 2023. "Don't (fully) exclude me, it's not necessary! Identification with semi-IVs," Papers 2303.12667, arXiv.org, revised Jul 2023.
    15. Hoderlein, Stefan & Holzmann, Hajo & Meister, Alexander, 2017. "The triangular model with random coefficients," Journal of Econometrics, Elsevier, vol. 201(1), pages 144-169.
    16. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    17. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    18. Suqin Ge & João Macieira, 2024. "Unobserved Worker Quality and Inter‐Industry Wage Differentials," Journal of Industrial Economics, Wiley Blackwell, vol. 72(1), pages 459-515, March.
    19. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    20. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:66/18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.