IDEAS home Printed from https://ideas.repec.org/p/aub/autbar/456.00.html
   My bibliography  Save this paper

The Chi-Compromise Value For Non-Transferable Utility Games

Author

Listed:
  • Gustavo Berganti?os
  • Jordi Massó

Abstract

We introduce a compromise value for non-transferable utility games: the Chi-compromise value. It is closely related to the Compromise value introduced by Borm, Keiding, McLean, Oortwijn, and Tijs (1992), to the MC-value introduced by Otten, Borm, Peleg, and Tijs (1998), and to the Ω-value introduced by Bergantiños, Casas-Méndez, and Vázquez-Brage (2000). The main difference being that the maximal aspiration a player may have in the game is his maximal (among all coalitions) marginal contribution. We show that it is well defined on the class of totally essential and non-level games. We propose an extensive-form game whose subgame perfect Nash equilibrium payoffs coincide with the Chi-compromise value. Copyright Springer-Verlag Berlin Heidelberg 2002
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Gustavo Berganti?os & Jordi Massó, "undated". "The Chi-Compromise Value For Non-Transferable Utility Games," UFAE and IAE Working Papers 456.00, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  • Handle: RePEc:aub:autbar:456.00
    as

    Download full text from publisher

    File URL: http://pareto.uab.es/wp/2000/45600.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hart, Sergiu & Kurz, Mordecai, 1983. "Endogenous Formation of Coalitions," Econometrica, Econometric Society, vol. 51(4), pages 1047-1064, July.
    2. Borm, Peter & Keiding, H & McLean, R.P. & Oortwijn, S & Tijs, S, 1992. "The Compromise Value for NTU-Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(2), pages 175-189.
    3. Shapley, Lloyd S. & Shubik, Martin, 1969. "On market games," Journal of Economic Theory, Elsevier, vol. 1(1), pages 9-25, June.
    4. Aumann, Robert J, 1985. "An Axiomatization of the Non-transferable Utility Value," Econometrica, Econometric Society, vol. 53(3), pages 599-612, May.
    5. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Bargaining and Value," Econometrica, Econometric Society, vol. 64(2), pages 357-380, March.
    6. Bezalel Peleg & Stef Tijs & Peter Borm & Gert-Jan Otten, 1998. "The MC-value for monotonic NTU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 37-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dietzenbacher, Bas & Yanovskaya, Elena, 2023. "The equal split-off set for NTU-games," Mathematical Social Sciences, Elsevier, vol. 121(C), pages 61-67.
    2. Gustavo Bergantiños & Balbina Casas- Méndez & Gloria Fiestras- Janeiro & Juan Vidal-Puga, 2005. "A Focal-Point Solution for Bargaining Problems with Coalition Structure," Game Theory and Information 0511006, University Library of Munich, Germany.
    3. Rebelo, S., 1997. "On the Determinant of Economic Growth," RCER Working Papers 443, University of Rochester - Center for Economic Research (RCER).
    4. Vidal-Puga, Juan J., 2008. "Forming coalitions and the Shapley NTU value," European Journal of Operational Research, Elsevier, vol. 190(3), pages 659-671, November.
    5. Juan Vidal-Puga, 2004. "Forming societies and the Shapley NTU value," Game Theory and Information 0401003, University Library of Munich, Germany.
    6. Bergantinos, G. & Casas-Mendez, B. & Fiestras-Janeiro, M.G. & Vidal-Puga, J.J., 2007. "A solution for bargaining problems with coalition structure," Mathematical Social Sciences, Elsevier, vol. 54(1), pages 35-58, July.
    7. Arantza Estévez-Fernández & Peter Borm & M. Gloria Fiestras-Janeiro, 2020. "Nontransferable utility bankruptcy games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 154-177, April.
    8. Roberto Serrano, 2007. "Cooperative Games: Core and Shapley Value," Working Papers wp2007_0709, CEMFI.
    9. Dietzenbacher, Bas, 2018. "Bankruptcy games with nontransferable utility," Mathematical Social Sciences, Elsevier, vol. 92(C), pages 16-21.
    10. Ray, Debraj & Vohra, Rajiv, 2015. "Coalition Formation," Handbook of Game Theory with Economic Applications,, Elsevier.
    11. Montero, Maria, 2002. "Non-cooperative bargaining in apex games and the kernel," Games and Economic Behavior, Elsevier, vol. 41(2), pages 309-321, November.
    12. Laruelle, Annick & Valenciano, Federico, 2007. "Bargaining in committees as an extension of Nash's bargaining theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 291-305, January.
    13. Geoffroy de Clippel & Roberto Serrano, 2008. "Marginal Contributions and Externalities in the Value," Econometrica, Econometric Society, vol. 76(6), pages 1413-1436, November.
    14. José-Manuel Giménez-Gómez & Peter Sudhölter & Cori Vilella, 2023. "Average monotonic cooperative games with nontransferable utility," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 383-390, June.
    15. Silvia Lorenzo-Freire, 2017. "New characterizations of the Owen and Banzhaf–Owen values using the intracoalitional balanced contributions property," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 579-600, October.
    16. Serrano, Roberto & Vohra, Rajiv, 2002. "Bargaining and Bargaining Sets," Games and Economic Behavior, Elsevier, vol. 39(2), pages 292-308, May.
    17. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    18. Geoffroy de Clippel & Roberto Serrano, 2008. "Bargaining, Coalitions and Externalities: a Comment on Maskin," Working Papers 2008-16, Brown University, Department of Economics.
    19. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    20. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aub:autbar:456.00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Xavier Vila (email available below). General contact details of provider: https://edirc.repec.org/data/ufuabes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.