IDEAS home Printed from https://ideas.repec.org/p/hrv/faseco/3196334.html
   My bibliography  Save this paper

Continuous Time Limits of Repeated Games with Imperfect Public Monitoring

Author

Listed:
  • Levine, David
  • Fudenberg, Drew

Abstract

In a repeated game with imperfect public information, the set of equilibria depends on the way that the distribution of public signals varies with the players' actions. Recent research has focused on the case of “frequent monitoring,†where the time interval between periods becomes small. Here we study a simple example of a commitment game with a long-run and short-run player in order to examine different specifications of how the signal distribution depends upon period length. We give a simple criterion for the existence of efficient equilibrium, and show that the efficiency of the equilibria that can be supported depends in an important way on the effect of the player's actions on the variance of the signals, and whether extreme values of the signals are “bad news†of “cheating†behavior, or “good news†of “cooperative†behavior.

Suggested Citation

  • Levine, David & Fudenberg, Drew, 2007. "Continuous Time Limits of Repeated Games with Imperfect Public Monitoring," Scholarly Articles 3196334, Harvard University Department of Economics.
  • Handle: RePEc:hrv:faseco:3196334
    as

    Download full text from publisher

    File URL: http://dash.harvard.edu/bitstream/handle/1/3196334/Continuous_Time_Limits.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yuliy Sannikov & Andrzej Skrzypacz, 2007. "Impossibility of Collusion under Imperfect Monitoring with Flexible Production," American Economic Review, American Economic Association, vol. 97(5), pages 1794-1823, December.
    2. Jonathan Levin, 2003. "Relational Incentive Contracts," American Economic Review, American Economic Association, vol. 93(3), pages 835-857, June.
    3. Martin F. Hellwig & Klaus M. Schmidt, 2002. "Discrete-Time Approximations of the Holmstrom-Milgrom Brownian-Motion Model of Intertemporal Incentive Provision," Econometrica, Econometric Society, vol. 70(6), pages 2225-2264, November.
    4. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2008. "Perfect public equilibrium when players are patient," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 16, pages 345-367, World Scientific Publishing Co. Pte. Ltd..
    5. Drew Fudenberg & David K. Levine, 2008. "Efficiency and Observability with Long-Run and Short-Run Players," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 13, pages 275-307, World Scientific Publishing Co. Pte. Ltd..
    6. Muller, Holger M., 2000. "Asymptotic Efficiency in Dynamic Principal-Agent Problems," Journal of Economic Theory, Elsevier, vol. 91(2), pages 292-301, April.
    7. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    8. Abreu, Dilip & Milgrom, Paul & Pearce, David, 1991. "Information and Timing in Repeated Partnerships," Econometrica, Econometric Society, vol. 59(6), pages 1713-1733, November.
    9. Yuliy Sannikov & Andrzej Skrzypacz, 2010. "The Role of Information in Repeated Games With Frequent Actions," Econometrica, Econometric Society, vol. 78(3), pages 847-882, May.
    10. Drew Fudenberg & David Levine, 2008. "Subgame–Perfect Equilibria of Finite– and Infinite–Horizon Games," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 1, pages 3-20, World Scientific Publishing Co. Pte. Ltd..
    11. Drew Fudenberg & David M. Kreps & Eric S. Maskin, 1990. "Repeated Games with Long-run and Short-run Players," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(4), pages 555-573.
    12. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, December.
    13. Holmstrom, Bengt & Milgrom, Paul, 1987. "Aggregation and Linearity in the Provision of Intertemporal Incentives," Econometrica, Econometric Society, vol. 55(2), pages 303-328, March.
    14. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osório António M., 2012. "A Folk Theorem for Games when Frequent Monitoring Decreases Noise," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-27, April.
    2. Drew Fudenberg & David K. Levine, 2009. "Repeated Games with Frequent Signals," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(1), pages 233-265.
    3. Kobayashi, Hajime & Ohta, Katsunori, 2012. "Optimal collusion under imperfect monitoring in multimarket contact," Games and Economic Behavior, Elsevier, vol. 76(2), pages 636-647.
    4. , H. & ,, 2016. "Approximate efficiency in repeated games with side-payments and correlated signals," Theoretical Economics, Econometric Society, vol. 11(1), January.
    5. Fudenberg, Drew & Olszewski, Wojciech, 2011. "Repeated games with asynchronous monitoring of an imperfect signal," Games and Economic Behavior, Elsevier, vol. 72(1), pages 86-99, May.
    6. Hörner, Johannes & Takahashi, Satoru, 2016. "How fast do equilibrium payoff sets converge in repeated games?," Journal of Economic Theory, Elsevier, vol. 165(C), pages 332-359.
    7. Daehyun Kim & Ichiro Obara, 2023. "Asymptotic Value of Monitoring Structures in Stochastic Games," Papers 2308.09211, arXiv.org, revised Jul 2024.
    8. Osório-Costa, António M., 2009. "Efficiency Gains in Repeated Games at Random Moments in Time," MPRA Paper 13105, University Library of Munich, Germany.
    9. Nuh Aygün Dalkıran, 2016. "Order of limits in reputations," Theory and Decision, Springer, vol. 81(3), pages 393-411, September.
    10. Osório Costa, Antonio Miguel, 2012. "The Limits of Discrete Time Repeated Games:Some Notes and Comments," Working Papers 2072/203171, Universitat Rovira i Virgili, Department of Economics.
    11. Kuvalekar, Aditya & Lipnowski, Elliot & Ramos, João, 2022. "Goodwill in communication," Journal of Economic Theory, Elsevier, vol. 203(C).
    12. Contou-Carrère, Pauline & Tomala, Tristan, 2011. "Finitely repeated games with semi-standard monitoring," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 14-21, January.
    13. W. Bentley MacLeod, 2006. "Reputations, Relationships and the Enforcement of Incomplete Contracts," CESifo Working Paper Series 1730, CESifo.
    14. Fudenberg, Drew & Yamamoto, Yuichi, 2011. "Learning from private information in noisy repeated games," Journal of Economic Theory, Elsevier, vol. 146(5), pages 1733-1769, September.
    15. Fudenberg, Drew & Ishii, Yuhta & Kominers, Scott Duke, 2014. "Delayed-response strategies in repeated games with observation lags," Journal of Economic Theory, Elsevier, vol. 150(C), pages 487-514.
    16. James M. Malcomson, 2012. "Relational Incentive Contracts [The Handbook of Organizational Economics]," Introductory Chapters,, Princeton University Press.
    17. Kobayashi, Hajime & Ohta, Katsunori & Sekiguchi, Tadashi, 2016. "Optimal sharing rules in repeated partnerships," Journal of Economic Theory, Elsevier, vol. 166(C), pages 311-323.
    18. Yamamoto, Yuichi, 2009. "A limit characterization of belief-free equilibrium payoffs in repeated games," Journal of Economic Theory, Elsevier, vol. 144(2), pages 802-824, March.
    19. Escobar, Juan F. & Llanes, Gastón, 2018. "Cooperation dynamics in repeated games of adverse selection," Journal of Economic Theory, Elsevier, vol. 176(C), pages 408-443.
    20. Aislinn Bohren, 2016. "Using Persistence to Generate Incentives in a Dynamic Moral Hazard Problem," PIER Working Paper Archive 16-024, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 15 Oct 2016.

    More about this item

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hrv:faseco:3196334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office for Scholarly Communication (email available below). General contact details of provider: https://edirc.repec.org/data/deharus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.