IDEAS home Printed from https://ideas.repec.org/p/arz/wpaper/eres2012_148.html
   My bibliography  Save this paper

An empirical comparative study for urban regeneration: measuring the effectiveness of DSS and GIS approaches

Author

Listed:
  • Alberto Calzada
  • Jun Liu
  • Hui Wang
  • Anil Kashyap

Abstract

Urban regeneration (UR) projects encompass complex decision-making processes that usually comprise a great amount of information collected from numerous data sources which may be uncertain, inconsistent or incomplete. Many stakeholders and other actors provide subjective judgments that need to be considered throughout the decision process. To support the decision-making procedure while handling the large and complex quantitative data along with qualitative information, a belief rule-base inference methodology (RIMER) has been proposed to be used in this research. The initial finding of the research based on RIMER shows promising results in terms of flexibility, accuracy, and applicability based on some case studies relevant to urban regeneration decision making problems. Furthermore, most factors involved in regeneration projects (i.e. indicators or alternatives) are geographically referenced, making spatial component a key input in the decision making process. Although there is a substantial body of literature regarding the combination of Geographic Information Systems (GIS) and Decision Support Systems (DSS) to tackle spatial decision problems, there is still a lack of empirical and comparative studies able to measure in real terms the results and effects when using both GIS and DSS together against the use of DSS or GIS technologies alone. Therefore, this research proposes to include a spatial analysis along with the RIMER approach for comprehensive analysis of input indicators. To demonstrate so, this paper presents a comparative study developed using real data of the Greater Belfast Area (GBA). First, an approach of the UR decision problem from a RIMER-based DSS point of view shows in numerical terms the benefits of using spatial analysis for a further adjustment of DSSs. Then, an analysis is executed from an entirely GIS perspective, based on the recently proposed Geographically Weighted Regression (GWR) model. To finish off, the empirical comparative study of both approaches is then conducted. The promising results retrieved in this empirical study indicate that RIMER-based DSS can provide a well-established base to implement further research in combination with different GIS methods to effectively handle the UR decision problem from an IT perspective, compared with GWR model in terms of flexibility, interpretation, accuracy, and applicability.

Suggested Citation

  • Alberto Calzada & Jun Liu & Hui Wang & Anil Kashyap, 2012. "An empirical comparative study for urban regeneration: measuring the effectiveness of DSS and GIS approaches," ERES eres2012_148, European Real Estate Society (ERES).
  • Handle: RePEc:arz:wpaper:eres2012_148
    as

    Download full text from publisher

    File URL: https://eres.architexturez.net/doc/oai-eres-id-eres2012-148
    Download Restriction: no

    File URL: https://eres.architexturez.net/system/files/pdf/eres2012_148.content.06835.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Jian-Bo, 2001. "Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties," European Journal of Operational Research, Elsevier, vol. 131(1), pages 31-61, May.
    2. Jun Liu & Jian-Bo Yang & Da Ruan & Luis Martinez & Jin Wang, 2008. "Self-tuning of fuzzy belief rule bases for engineering system safety analysis," Annals of Operations Research, Springer, vol. 163(1), pages 143-168, October.
    3. Xu, Dong-Ling & Yang, Jian-Bo & Wang, Ying-Ming, 2006. "The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1914-1943, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Ling Xu, 2012. "An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 195(1), pages 163-187, May.
    2. J-B Yang & D-L Xu & X Xie & A K Maddulapalli, 2011. "Multicriteria evidential reasoning decision modelling and analysis—prioritizing voices of customer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1638-1654, September.
    3. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.
    4. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    5. Wan, Chengpeng & Yan, Xinping & Zhang, Di & Yang, Zaili, 2019. "A novel policy making aid model for the development of LNG fuelled ships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 29-44.
    6. Fu, Chao & Yang, Shan-Lin, 2010. "The group consensus based evidential reasoning approach for multiple attributive group decision analysis," European Journal of Operational Research, Elsevier, vol. 206(3), pages 601-608, November.
    7. Merigó, José M. & Casanovas, Montserrat & Yang, Jian-Bo, 2014. "Group decision making with expertons and uncertain generalized probabilistic weighted aggregation operators," European Journal of Operational Research, Elsevier, vol. 235(1), pages 215-224.
    8. Guo, Min & Yang, Jian-Bo & Chin, Kwai-Sang & Wang, Hongwei, 2007. "Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1294-1312, November.
    9. Behnam Vahdani & Meghdad Salimi & Seyed Meysam Mousavi, 2017. "A New Compromise Solution Model Based on Dantzig–Wolfe Decomposition for Solving Belief Multi-Objective Nonlinear Programming Problems with Block Angular Structure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 333-387, March.
    10. Guo, Min & Chen, Yu-wang & Wang, Hongwei & Yang, Jian-Bo & Zhang, Keyong, 2019. "The single-period (newsvendor) problem under interval grade uncertainties," European Journal of Operational Research, Elsevier, vol. 273(1), pages 198-216.
    11. Jun Liu & Luis Martinez & Da Ruan & Rosa Rodriguez & Alberto Calzada, 2011. "Optimization algorithm for learning consistent belief rule-base from examples," Journal of Global Optimization, Springer, vol. 51(2), pages 255-270, October.
    12. Zhang, Mei-Jing & Wang, Ying-Ming & Li, Ling-Hui & Chen, Sheng-Qun, 2017. "A general evidential reasoning algorithm for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1005-1015.
    13. Gao, Jianwei & Li, Ming & Liu, Huihui, 2015. "Generalized ordered weighted utility averaging-hyperbolic absolute risk aversion operators and their applications to group decision-making," European Journal of Operational Research, Elsevier, vol. 243(1), pages 258-270.
    14. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    15. Maddulapalli, Anil Kumar & Yang, Jian-Bo & Xu, Dong-Ling, 2012. "Estimation, modeling, and aggregation of missing survey data for prioritizing customer voices," European Journal of Operational Research, Elsevier, vol. 220(3), pages 762-776.
    16. Hua Zhu & Jianbin Zhao & Yang Xu & Limin Du, 2016. "Interval-Valued Belief Rule Inference Methodology Based on Evidential Reasoning-IRIMER," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1345-1366, November.
    17. Fu, Chao & Yang, Jian-Bo & Yang, Shan-Lin, 2015. "A group evidential reasoning approach based on expert reliability," European Journal of Operational Research, Elsevier, vol. 246(3), pages 886-893.
    18. Gao, Bin & Ni, Ming-Fang, 2009. "A note on article "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 809-812, September.
    19. Wu, Xingli & Liao, Huchang, 2021. "Modeling personalized cognition of customers in online shopping," Omega, Elsevier, vol. 104(C).
    20. Ni, Lei & Chen, Yu-wang & de Brujin, Oscar, 2021. "Towards understanding socially influenced vaccination decision making: An integrated model of multiple criteria belief modelling and social network analysis," European Journal of Operational Research, Elsevier, vol. 293(1), pages 276-289.

    More about this item

    JEL classification:

    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arz:wpaper:eres2012_148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Architexturez Imprints (email available below). General contact details of provider: https://edirc.repec.org/data/eressea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.