IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0507161.html
   My bibliography  Save this paper

Prospects for Money Transfer Models

Author

Listed:
  • Yougui Wang
  • Ning Ding
  • Ning Xi

Abstract

Recently, in order to explore the mechanism behind wealth or income distribution, several models have been proposed by applying principles of statistical mechanics. These models share some characteristics, such as consisting of a group of individual agents, a pile of money and a specific trading rule. Whatever the trading rule is, the most noteworthy fact is that money is always transferred from one agent to another in the transferring process. So we call them money transfer models. Besides explaining income and wealth distributions, money transfer models can also be applied to other disciplines. In this paper we summarize these areas as statistical distribution, economic mobility, transfer rate and money creation. First, money distribution (or income distribution) can be exhibited by recording the money stock (flow). Second, the economic mobility can be shown by tracing the change in wealth or income over time for each agent. Third, the transfer rate of money and its determinants can be analyzed by tracing the transferring process of each one unit of money. Finally, money creation process can also be investigated by permitting agents go into debts. Some future extensions to these models are anticipated to be structural improvement and generalized mathematical analysis.

Suggested Citation

  • Yougui Wang & Ning Ding & Ning Xi, 2005. "Prospects for Money Transfer Models," Papers physics/0507161, arXiv.org.
  • Handle: RePEc:arx:papers:physics/0507161
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0507161
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. Ding & N. Xi & Y. Wang, 2003. "Effects of saving and spending patterns on holding time distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 36(1), pages 149-153, November.
    2. Ning Ding & Yougui Wang, 2005. "Power-Law Distributions in Circulating Money: Effect of Preferential Behavior," Papers physics/0507151, arXiv.org.
    3. Yougui Wang & Ning Ding & Li Zhang, 2005. "The Circulation of Money and Holding Time Distribution," Papers physics/0507147, arXiv.org.
    4. Fischer, Robert & Braun, Dieter, 2003. "Transfer potentials shape and equilibrate monetary systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 605-618.
    5. Wang, Yougui & Ding, Ning & Zhang, Li, 2003. "The circulation of money and holding time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 665-677.
    6. Wang, Yougui & Qiu, Hanqing, 2005. "The velocity of money in a life-cycle model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 493-500.
    7. Yougui Wang & Hanqing Qiu, 2005. "The Velocity of Money in a Life-Cycle Model," Papers physics/0507159, arXiv.org.
    8. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
    9. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    10. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    11. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
    12. Schiller, Bradley R, 1977. "Relative Earnings Mobility in the United States," American Economic Review, American Economic Association, vol. 67(5), pages 926-941, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yougui Wang & Ning Ding, 2005. "Dynamic Process of Money Transfer Models," Papers physics/0507162, arXiv.org.
    2. Xing, Xiaoyun & Xiong, Wanting & Chen, Liujun & Chen, Jiawei & Wang, Yougui & Stanley, H. Eugene, 2018. "Money circulation and debt circulation: A restatement of quantity theory of money," Economics Discussion Papers 2018-1, Kiel Institute for the World Economy (IfW Kiel).
    3. Huang, Jing & Wang, Yougui, 2014. "The time-dependent characteristics of relative mobility," Economic Modelling, Elsevier, vol. 37(C), pages 291-295.
    4. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    5. Sitabhra Sinha, 2005. "The Rich Are Different!: Pareto Law from asymmetric interactions in asset exchange models," Papers physics/0504197, arXiv.org.
    6. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    7. Campolieti, Michele, 2018. "Heavy-tailed distributions and the distribution of wealth: Evidence from rich lists in Canada, 1999–2017," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 263-272.
    8. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    9. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Statistical theories of income and wealth distribution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-31.
    10. Brugna, Carlo & Toscani, Giuseppe, 2018. "Kinetic models for goods exchange in a multi-agent market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 362-375.
    11. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.
    12. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    13. Juan Pablo Pinasco & Mauro Rodríguez Cartabia & Nicolas Saintier, 2018. "A Game Theoretic Model of Wealth Distribution," Dynamic Games and Applications, Springer, vol. 8(4), pages 874-890, December.
    14. Shu-Heng Chen & Sai-Ping Li, 2011. "Econophysics: Bridges over a Turbulent Current," Papers 1107.5373, arXiv.org.
    15. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    16. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    17. Bagatella-Flores, N. & Rodríguez-Achach, M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2015. "Wealth distribution of simple exchange models coupled with extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 168-175.
    18. Adams Vallejos & Ignacio Ormazabal & Felix A. Borotto & Hernan F. Astudillo, 2018. "A new $\kappa$-deformed parametric model for the size distribution of wealth," Papers 1805.06929, arXiv.org.
    19. Hu, Chunhua & Lai, Shaoyong & Lai, Chong, 2020. "Investigations to the price evolutions of goods exchange with CES utility functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    20. Angle, John, 2006. "The Inequality Process as a wealth maximizing process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 388-414.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0507161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.