IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0703820.html
   My bibliography  Save this paper

Correspondence between Lifetime Minimum Wealth and Utility of Consumption

Author

Listed:
  • Erhan Bayraktar
  • Virginia R. Young

Abstract

We establish when the two problems of minimizing a function of lifetime minimum wealth and of maximizing utility of lifetime consumption result in the same optimal investment strategy on a given open interval $O$ in wealth space. To answer this question, we equate the two investment strategies and show that if the individual consumes at the same rate in both problems -- the consumption rate is a control in the problem of maximizing utility -- then the investment strategies are equal only when the consumption function is linear in wealth on $O$, a rather surprising result. It, then, follows that the corresponding investment strategy is also linear in wealth and the implied utility function exhibits hyperbolic absolute risk aversion.

Suggested Citation

  • Erhan Bayraktar & Virginia R. Young, 2007. "Correspondence between Lifetime Minimum Wealth and Utility of Consumption," Papers math/0703820, arXiv.org.
  • Handle: RePEc:arx:papers:math/0703820
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0703820
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    2. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    3. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    4. Virginia Young, 2004. "Optimal Investment Strategy to Minimize the Probability of Lifetime Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(4), pages 106-126.
    5. Milevsky, Moshe Arye & Ho, Kwok & Robinson, Chris, 1997. "Asset Allocation via the Conditional First Exit Time or How to Avoid Outliving Your Money," Review of Quantitative Finance and Accounting, Springer, vol. 9(1), pages 53-70, July.
    6. Bayraktar, Erhan & Young, Virginia R., 2009. "Minimizing the lifetime shortfall or shortfall at death," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 447-458, June.
    7. Moshe Milevsky & Chris Robinson, 2000. "Self-Annuitization and Ruin in Retirement," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 112-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayraktar, Erhan & Hu, Xueying & Young, Virginia R., 2011. "Minimizing the probability of lifetime ruin under stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 194-206, September.
    2. Bahman Angoshtari & Erhan Bayraktar & Virginia R. Young, 2015. "Optimal Investment to Minimize the Probability of Drawdown," Papers 1506.00166, arXiv.org, revised Feb 2016.
    3. Erhan Bayraktar & Virginia Young, 2011. "Proving regularity of the minimal probability of ruin via a game of stopping and control," Finance and Stochastics, Springer, vol. 15(4), pages 785-818, December.
    4. Bayraktar, Erhan & Young, Virginia R., 2016. "Optimally investing to reach a bequest goal," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 1-10.
    5. Bayraktar, Erhan & Young, Virginia R., 2008. "Mutual fund theorems when minimizing the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(2), pages 69-78, June.
    6. Erhan Bayraktar & Yuchong Zhang, 2014. "Minimizing the Probability of Lifetime Ruin Under Ambiguity Aversion," Papers 1402.1809, arXiv.org, revised Nov 2014.
    7. Erhan Bayraktar & Virginia Young, 2008. "Minimizing the Probability of Ruin When Consumption is Ratcheted," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(4), pages 428-442.
    8. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2016. "Minimizing the probability of lifetime drawdown under constant consumption," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 210-223.
    9. Cohen, Asaf & Young, Virginia R., 2016. "Minimizing lifetime poverty with a penalty for bankruptcy," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 156-167.
    10. Bayraktar, Erhan & Young, Virginia R., 2008. "Maximizing utility of consumption subject to a constraint on the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(4), pages 204-212, December.
    11. Erhan Bayraktar & Asaf Cohen, 2015. "Risk Sensitive Control of the Lifetime Ruin Problem," Papers 1503.05769, arXiv.org, revised Jul 2016.
    12. Erhan Bayraktar & Virginia Young, 2010. "Optimal investment strategy to minimize occupation time," Annals of Operations Research, Springer, vol. 176(1), pages 389-408, April.
    13. Bayraktar, Erhan & Young, Virginia R., 2009. "Minimizing the lifetime shortfall or shortfall at death," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 447-458, June.
    14. Asaf Cohen & Virginia R. Young, 2015. "Minimizing Lifetime Poverty with a Penalty for Bankruptcy," Papers 1509.01694, arXiv.org.
    15. Petrichev, Konstantin & Thorp, Susan, 2008. "The private value of public pensions," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1138-1145, June.
    16. Nielsen, Peter Holm & Steffensen, Mogens, 2008. "Optimal investment and life insurance strategies under minimum and maximum constraints," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 15-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    2. Erhan Bayraktar & Virginia Young, 2011. "Proving regularity of the minimal probability of ruin via a game of stopping and control," Finance and Stochastics, Springer, vol. 15(4), pages 785-818, December.
    3. Erhan Bayraktar & Virginia R. Young, 2007. "Optimal Deferred Life Annuities to Minimize the Probability of Lifetime Ruin," Papers math/0703862, arXiv.org, revised Oct 2007.
    4. Landriault, David & Li, Bin & Loke, Sooie-Hoe & Willmot, Gordon E. & Xu, Di, 2017. "A note on the convexity of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 1-6.
    5. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    6. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    7. Young, Virginia R., 2017. "Purchasing casualty insurance to avoid lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 133-142.
    8. Zhou, Qing, 2009. "Optimal investment for an insurer in the Lévy market: The martingale approach," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1602-1607, July.
    9. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    10. Begoña Fernández & Daniel Hernández-Hernández & Ana Meda & Patricia Saavedra, 2008. "An optimal investment strategy with maximal risk aversion and its ruin probability," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 159-179, August.
    11. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    12. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    13. J. Cerda-Hernandez & A. Sikov & A. Ramos, 2022. "An optimal investment strategy aimed at maximizing the expected utility across all intermediate capital levels," Papers 2207.02947, arXiv.org, revised Jun 2024.
    14. Wujun Lv & Linlin Tian & Xiaoyi Zhang, 2023. "Optimal Defined Contribution Pension Management with Jump Diffusions and Common Shock Dependence," Mathematics, MDPI, vol. 11(13), pages 1-20, July.
    15. Junna Bi & Qingbin Meng & Yongji Zhang, 2014. "Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer," Annals of Operations Research, Springer, vol. 212(1), pages 43-59, January.
    16. Li, Ping & Zhao, Wu & Zhou, Wei, 2015. "Ruin probabilities and optimal investment when the stock price follows an exponential Lévy process," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 1030-1045.
    17. Xu, Lin & Zhang, Liming & Yao, Dingjun, 2017. "Optimal investment and reinsurance for an insurer under Markov-modulated financial market," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 7-19.
    18. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    19. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    20. Schmidli, Hanspeter, 2005. "On optimal investment and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 25-35, February.

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0703820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.