IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0703862.html
   My bibliography  Save this paper

Optimal Deferred Life Annuities to Minimize the Probability of Lifetime Ruin

Author

Listed:
  • Erhan Bayraktar
  • Virginia R. Young

Abstract

We find the minimum probability of lifetime ruin of an investor who can invest in a market with a risky and a riskless asset and can purchase a deferred annuity. Although we let the admissible set of strategies of annuity purchasing process to be increasing adapted processes, we find that the individual will not buy a deferred life annuity unless she can cover all her consumption via the annuity and have enough wealth left over to sustain her until the end of the deferral period.

Suggested Citation

  • Erhan Bayraktar & Virginia R. Young, 2007. "Optimal Deferred Life Annuities to Minimize the Probability of Lifetime Ruin," Papers math/0703862, arXiv.org, revised Oct 2007.
  • Handle: RePEc:arx:papers:math/0703862
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0703862
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    2. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    3. Virginia Young, 2004. "Optimal Investment Strategy to Minimize the Probability of Lifetime Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(4), pages 106-126.
    4. Menahem E. Yaari, 1965. "Uncertain Lifetime, Life Insurance, and the Theory of the Consumer," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(2), pages 137-150.
    5. Moshe Milevsky & Chris Robinson, 2000. "Self-Annuitization and Ruin in Retirement," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 112-124.
    6. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayraktar, Erhan & Hu, Xueying & Young, Virginia R., 2011. "Minimizing the probability of lifetime ruin under stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 194-206, September.
    2. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2015. "Minimizing the expected lifetime spent in drawdown under proportional consumption," Finance Research Letters, Elsevier, vol. 15(C), pages 106-114.
    3. Liang, Xiaoqing & Young, Virginia R., 2023. "Annuitizing at a bounded, absolutely continuous rate to minimize the probability of lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 80-96.
    4. Asaf Cohen & Virginia R. Young, 2015. "Minimizing Lifetime Poverty with a Penalty for Bankruptcy," Papers 1509.01694, arXiv.org.
    5. Junbeom Lee & Xiang Yu & Chao Zhou, 2019. "Lifetime Ruin under High-watermark Fees and Drift Uncertainty," Papers 1909.01121, arXiv.org, revised Oct 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    2. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
    3. Erhan Bayraktar & Virginia Young, 2011. "Proving regularity of the minimal probability of ruin via a game of stopping and control," Finance and Stochastics, Springer, vol. 15(4), pages 785-818, December.
    4. Erhan Bayraktar & Virginia Young, 2007. "Correspondence between lifetime minimum wealth and utility of consumption," Finance and Stochastics, Springer, vol. 11(2), pages 213-236, April.
    5. Moshe A. Milevsky & Kristen S. Moore & Virginia R. Young, 2006. "Asset Allocation And Annuity‐Purchase Strategies To Minimize The Probability Of Financial Ruin," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 647-671, October.
    6. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    7. Guan, Guohui & Liang, Zongxia, 2019. "Robust optimal reinsurance and investment strategies for an AAI with multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 63-78.
    8. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2021. "Stochastic differential investment and reinsurance games with nonlinear risk processes and VaR constraints," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 168-184.
    9. Wang, Ting & Young, Virginia R., 2012. "Optimal commutable annuities to minimize the probability of lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 200-216.
    10. Landriault, David & Li, Bin & Loke, Sooie-Hoe & Willmot, Gordon E. & Xu, Di, 2017. "A note on the convexity of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 1-6.
    11. Virginia R. Young, 2004. "Pricing In An Incomplete Market With An Affine Term Structure," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 359-381, July.
    12. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    13. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    14. Opler, Tim & Pinkowitz, Lee & Stulz, Rene & Williamson, Rohan, 1999. "The determinants and implications of corporate cash holdings," Journal of Financial Economics, Elsevier, vol. 52(1), pages 3-46, April.
    15. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    16. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    17. Young, Virginia R., 2017. "Purchasing casualty insurance to avoid lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 133-142.
    18. Stamos, Michael Z., 2008. "Optimal consumption and portfolio choice for pooled annuity funds," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 56-68, August.
    19. Zhou, Qing, 2009. "Optimal investment for an insurer in the Lévy market: The martingale approach," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1602-1607, July.
    20. Marina Di Giacinto & Bjarne Højgaard & Elena Vigna, 2010. "Optimal time of annuitization in the decumulation phase of a defined contribution pension scheme," Working Papers 2010-08, Universita' di Cassino, Dipartimento di Economia e Giurisprudenza.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0703862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.