IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.11691.html
   My bibliography  Save this paper

Causal Inference for Qualitative Outcomes

Author

Listed:
  • Riccardo Di Francesco
  • Giovanni Mellace

Abstract

Causal inference methods such as instrumental variables, regression discontinuity, and difference-in-differences are widely used to estimate treatment effects. However, their application to qualitative outcomes poses fundamental challenges, as standard causal estimands are ill-defined in this context. This paper highlights these issues and introduces an alternative framework that focuses on well-defined and interpretable estimands that quantify how treatment affects the probability distribution over outcome categories. We establish that standard identification assumptions are sufficient for identification and propose simple, intuitive estimation strategies that remain fully compatible with conventional econometric methods. To facilitate implementation, we provide an open-source R package, $\texttt{causalQual}$, which is publicly available on GitHub.

Suggested Citation

  • Riccardo Di Francesco & Giovanni Mellace, 2025. "Causal Inference for Qualitative Outcomes," Papers 2502.11691, arXiv.org.
  • Handle: RePEc:arx:papers:2502.11691
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.11691
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    2. Bruno S. Frey & Alois Stutzer, 2002. "What Can Economists Learn from Happiness Research?," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 402-435, June.
    3. Clément de Chaisemartin & Xavier D’Haultfœuille, 2023. "Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a survey," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 1-30.
    4. Leonard Goff, 2020. "A Vector Monotonicity Assumption for Multiple Instruments," Papers 2009.00553, arXiv.org, revised Mar 2024.
    5. Alan Agresti & Maria Kateri, 2017. "Ordinal probability effect measures for group comparisons in multinomial cumulative link models," Biometrics, The International Biometric Society, vol. 73(1), pages 214-219, March.
    6. Goff, Leonard, 2024. "A vector monotonicity assumption for multiple instruments," Journal of Econometrics, Elsevier, vol. 241(1).
    7. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    2. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    3. Susan Athey & Raj Chetty & Guido Imbens, 2020. "Combining Experimental and Observational Data to Estimate Treatment Effects on Long Term Outcomes," Papers 2006.09676, arXiv.org.
    4. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    5. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    7. Marynia Kolak & Luc Anselin, 2020. "A Spatial Perspective on the Econometrics of Program Evaluation," International Regional Science Review, , vol. 43(1-2), pages 128-153, January.
    8. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    9. Cerulli, Giovanni, 2019. "Data-driven sensitivity analysis for matching estimators," Economics Letters, Elsevier, vol. 185(C).
    10. Massenz, Gabriella, 2023. "On the behavioral effects of tax policy," Other publications TiSEM eb44a9f7-b859-480d-b2e4-4, Tilburg University, School of Economics and Management.
    11. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    12. Öberg, Stefan, 2021. "Treatment for natural experiments: How to improve causal estimates using conceptual definitions and substantive interpretations," SocArXiv pkyue, Center for Open Science.
    13. W. Bentley MacLeod, 2017. "Viewpoint: The human capital approach to inference," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(1), pages 5-39, February.
    14. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
    15. Roberto Esposti, 2022. "Non-Monetary Motivations Of Agroenvironmental Policies Adoption. A Causal Forest Approach," Working Papers 459, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    16. Esterling, Kevin & Brady, David & Schwitzgebel, Eric, 2021. "The Necessity of Construct and External Validity for Generalized Causal Claims," OSF Preprints 2s8w5, Center for Open Science.
    17. Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Oct 2024.
    18. Garg, Prashant & Fetzer, Thiemo, 2024. "Causal Claims in Economics," OSF Preprints u4vgs_v1, Center for Open Science.
    19. Esterling, Kevin M. & Brady, David & Schwitzgebel, Eric, 2023. "The Necessity of Construct and External Validity for Generalized Causal Claims," I4R Discussion Paper Series 18, The Institute for Replication (I4R).
    20. Ian D. Gow & David F. Larcker & Peter C. Reiss, 2016. "Causal Inference in Accounting Research," Journal of Accounting Research, Wiley Blackwell, vol. 54(2), pages 477-523, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.11691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.