Regression Modeling of the Count Relational Data with Exchangeable Dependencies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Patrick O. Perry & Patrick J. Wolfe, 2013. "Point process modelling for directed interaction networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 821-849, November.
- Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984.
"Pseudo Maximum Likelihood Methods: Theory,"
Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
- Gourieroux Christian & Monfort Alain & Trognon A, 1981. "Pseudo maximum likelihood methods : theory," CEPREMAP Working Papers (Couverture Orange) 8129, CEPREMAP.
- Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984.
"Pseudo Maximum Likelihood Methods: Applications to Poisson Models,"
Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
- Gourieroux Christian & Monfort Alain & Trognon A, 1982. "Pseudo maximum lilelihood methods : applications to poisson models," CEPREMAP Working Papers (Couverture Orange) 8203, CEPREMAP.
- Peter C. B. Phillips & Hyungsik R. Moon, 1999.
"Linear Regression Limit Theory for Nonstationary Panel Data,"
Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
- Peter C.B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Cowles Foundation Discussion Papers 1222, Cowles Foundation for Research in Economics, Yale University.
- Sihai Dave Zhao & T. Tony Cai & Hongzhe Li, 2014. "Direct estimation of differential networks," Biometrika, Biometrika Trust, vol. 101(2), pages 253-268.
- Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
- Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
- Yuan Zhang & Elizaveta Levina & Ji Zhu, 2017. "Estimating network edge probabilities by neighbourhood smoothing," Biometrika, Biometrika Trust, vol. 104(4), pages 771-783.
- Bryan S. Graham & Fengshi Niu & James L. Powell, 2020.
"Minimax Risk and Uniform Convergence Rates for Nonparametric Dyadic Regression,"
Papers
2012.08444, arXiv.org, revised Mar 2021.
- Bryan S. Graham & Fengshi Niu & James L. Powell, 2021. "Minimax Risk and Uniform Convergence Rates for Nonparametric Dyadic Regression," NBER Working Papers 28548, National Bureau of Economic Research, Inc.
- Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021.
"Nonlinear factor models for network and panel data,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
- Mingli Chen & Iv'an Fern'andez-Val & Martin Weidner, 2014. "Nonlinear Factor Models for Network and Panel Data," Papers 1412.5647, arXiv.org, revised Oct 2019.
- Mingli Chen & Ivan Fernandez-Val & Martin Weidner, 2019. "Nonlinear factor models for network and panel data," CeMMAP working papers CWP18/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Mingli Chen & Ivan Fernandez-Val & Martin Weidner, 2018. "Nonlinear factor models for network and panel data," CeMMAP working papers CWP38/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Aronow, Peter M. & Samii, Cyrus & Assenova, Valentina A., 2015. "Cluster–Robust Variance Estimation for Dyadic Data," Political Analysis, Cambridge University Press, vol. 23(4), pages 564-577.
- Minhas, Shahryar & Hoff, Peter D. & Ward, Michael D., 2019. "Inferential Approaches for Network Analysis: AMEN for Latent Factor Models," Political Analysis, Cambridge University Press, vol. 27(2), pages 208-222, April.
- Konrad Menzel, 2021. "Bootstrap With Cluster‐Dependence in Two or More Dimensions," Econometrica, Econometric Society, vol. 89(5), pages 2143-2188, September.
- Bryan S. Graham, 2017.
"An Econometric Model of Network Formation With Degree Heterogeneity,"
Econometrica, Econometric Society, vol. 85, pages 1033-1063, July.
- Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers CWP08/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- F W Marrs & B K Fosdick & T H Mccormick, 2023. "Regression of exchangeable relational arrays," Biometrika, Biometrika Trust, vol. 110(1), pages 265-272.
- Hoff, Peter & Fosdick, Bailey & Volfovsky, Alex & Stovel, Katherine, 2013. "Likelihoods for fixed rank nomination networks," Network Science, Cambridge University Press, vol. 1(3), pages 253-277, December.
- Jingfei Zhang & Will Wei Sun & Lexin Li, 2020. "Mixed-Effect Time-Varying Network Model and Application in Brain Connectivity Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2022-2036, December.
- Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
- Can M. Le & Tianxi Li, 2022. "Linear regression and its inference on noisy network‐linked data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1851-1885, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Weidner, Martin & Zylkin, Thomas, 2021.
"Bias and consistency in three-way gravity models,"
Journal of International Economics, Elsevier, vol. 132(C).
- Martin Weidner & Thomas Zylkin, 2019. "Bias and Consistency in Three-way Gravity Models," Papers 1909.01327, arXiv.org, revised Jun 2021.
- Martin Weidner & Thomas Zylkin, 2021. "Bias and consistency in three-way gravity models," CeMMAP working papers CWP11/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Martin Weidner & Thomas Zylkin, 2020. "Bias and Consistency in Three-way Gravity Models," CeMMAP working papers CWP1/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
- Bryan S. Graham, 2019. "Dyadic Regression," Papers 1908.09029, arXiv.org.
- Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024.
"Network and panel quantile effects via distribution regression,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Victor Chernozhukov & Iv'an Fern'andez-Val & Martin Weidner, 2018. "Network and Panel Quantile Effects Via Distribution Regression," Papers 1803.08154, arXiv.org, revised Jun 2020.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP21/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2020. "Network and Panel Quantile Effects Via Distribution Regression," CeMMAP working papers CWP27/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP70/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021.
"Nonlinear factor models for network and panel data,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
- Mingli Chen & Iv'an Fern'andez-Val & Martin Weidner, 2014. "Nonlinear Factor Models for Network and Panel Data," Papers 1412.5647, arXiv.org, revised Oct 2019.
- Mingli Chen & Ivan Fernandez-Val & Martin Weidner, 2019. "Nonlinear factor models for network and panel data," CeMMAP working papers CWP18/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Mingli Chen & Ivan Fernandez-Val & Martin Weidner, 2018. "Nonlinear factor models for network and panel data," CeMMAP working papers CWP38/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- David W. Hughes, 2021.
"Estimating Nonlinear Network Data Models with Fixed Effects,"
Boston College Working Papers in Economics
1058, Boston College Department of Economics.
- David W. Hughes, 2022. "Estimating Nonlinear Network Data Models with Fixed Effects," Papers 2203.15603, arXiv.org, revised Mar 2023.
- Claudia Pigini & Alessandro Pionati & Francesco Valentini, 2025. "Grouped fixed effects regularization for binary choice models," Papers 2502.06446, arXiv.org.
- Qiuping Wang & Yuan Zhang & Ting Yan, 2023. "Asymptotic theory in network models with covariates and a growing number of node parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 369-392, April.
- Gao, Wayne Yuan & Li, Ming & Xu, Sheng, 2023.
"Logical differencing in dyadic network formation models with nontransferable utilities,"
Journal of Econometrics, Elsevier, vol. 235(1), pages 302-324.
- Wayne Yuan Gao & Ming Li & Sheng Xu, 2020. "Logical Differencing in Dyadic Network Formation Models with Nontransferable Utilities," Papers 2001.00691, arXiv.org, revised Jul 2021.
- Hugo Freeman & Martin Weidner, 2021.
"Low-rank approximations of nonseparable panel models,"
The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 40-77.
- Ivan Fernandez-Val & Hugo Freeman & Martin Weidner, 2020. "Low-rank approximations of nonseparable panel models," CeMMAP working papers CWP52/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ivan Fernandez-Val & Hugo Freeman & Martin Weidner, 2021. "Low-rank approximations of nonseparable panel models," CeMMAP working papers CWP10/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2024.
"MCMC conditional maximum likelihood for the two-way fixed-effects logit,"
Econometric Reviews, Taylor & Francis Journals, vol. 43(6), pages 379-404, July.
- Bartolucci, Francesco & Pigini, Claudia & Valentini, Francesco, 2021. "MCMC Conditional Maximum Likelihood for the two-way fixed-effects logit," MPRA Paper 110034, University Library of Munich, Germany.
- Alex Centeno, 2022. "A Structural Model for Detecting Communities in Networks," Papers 2209.08380, arXiv.org, revised Oct 2022.
- Aristide Houndetoungan, 2024. "Count Data Models with Heterogeneous Peer Effects under Rational Expectations," Papers 2405.17290, arXiv.org.
- Zuckerman, David, 2024. "Multidimensional homophily," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 486-513.
- Graham, Bryan S. & Niu, Fengshi & Powell, James L., 2024. "Kernel density estimation for undirected dyadic data," Journal of Econometrics, Elsevier, vol. 240(2).
- Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
- Ting Fung Ma & Fangfang Wang & Jun Zhu, 2023. "On generalized latent factor modeling and inference for high‐dimensional binomial data," Biometrics, The International Biometric Society, vol. 79(3), pages 2311-2320, September.
- Ming Li & Zhentao Shi & Yapeng Zheng, 2024. "Estimation and Inference in Dyadic Network Formation Models with Nontransferable Utilities," Papers 2410.23852, arXiv.org.
- Candelaria, Luis E. & Ura, Takuya, 2023. "Identification and inference of network formation games with misclassified links," Journal of Econometrics, Elsevier, vol. 235(2), pages 862-891.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.11255. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.