IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v240y2024i2s0304407622001610.html
   My bibliography  Save this article

Kernel density estimation for undirected dyadic data

Author

Listed:
  • Graham, Bryan S.
  • Niu, Fengshi
  • Powell, James L.

Abstract

We study nonparametric estimation of density functions for undirected dyadic random variables (i.e., random variables defined for all n≡defN2 unordered pairs of agents/nodes in a weighted network of order N). These random variables satisfy a local dependence property: any random variables in the network that share one or two indices may be dependent, while those sharing no indices in common are independent. In this setting, we show that density functions may be estimated by an application of the kernel estimation method of Rosenblatt (1956) and Parzen (1962). We suggest an estimate of their asymptotic variances inspired by a combination of (i) Newey’s (1994) method of variance estimation for kernel estimators in the “monadic” setting and (ii) a variance estimator for the (estimated) density of a simple network first suggested by Holland and Leinhardt (1976). More unusual are the rates of convergence and asymptotic (normal) distributions of our dyadic density estimates. Specifically, we show that they converge at the same rate as the (unconditional) dyadic sample mean: the square root of the number, N, of nodes. This differs from the results for nonparametric estimation of densities and regression functions for monadic data, which generally have a slower rate of convergence than their corresponding sample mean.

Suggested Citation

  • Graham, Bryan S. & Niu, Fengshi & Powell, James L., 2024. "Kernel density estimation for undirected dyadic data," Journal of Econometrics, Elsevier, vol. 240(2).
  • Handle: RePEc:eee:econom:v:240:y:2024:i:2:s0304407622001610
    DOI: 10.1016/j.jeconom.2022.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622001610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Nowicki, 1991. "Asymptotic distributions in random graphs with applications to social networks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 45(3), pages 295-325, September.
    2. Michael D. König & Xiaodong Liu & Yves Zenou, 2019. "R&D Networks: Theory, Empirics, and Policy Implications," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 476-491, July.
    3. Aldous, David J., 1981. "Representations for partially exchangeable arrays of random variables," Journal of Multivariate Analysis, Elsevier, vol. 11(4), pages 581-598, December.
    4. Fafchamps, Marcel & Gubert, Flore, 2007. "The formation of risk sharing networks," Journal of Development Economics, Elsevier, vol. 83(2), pages 326-350, July.
    5. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 1-21, June.
    6. Nicholas Christakis & James Fowler & Guido Imbens & Karthik Kalyanaraman, 2010. "An empirical model for strategic network formation," CeMMAP working papers CWP16/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(1), pages 176-200, February.
    8. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
    9. repec:dau:papers:123456789/4392 is not listed on IDEAS
    10. repec:dau:papers:123456789/10840 is not listed on IDEAS
    11. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    12. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    13. Bryan S. Graham & Fengshi Niu & James L. Powell, 2020. "Minimax Risk and Uniform Convergence Rates for Nonparametric Dyadic Regression," Papers 2012.08444, arXiv.org, revised Mar 2021.
    14. Marcel Fafchamps & Flore Gubert, 2007. "Risk Sharing and Network Formation," American Economic Review, American Economic Association, vol. 97(2), pages 75-79, May.
    15. Bryan S. Graham, 2017. "An Econometric Model of Network Formation With Degree Heterogeneity," Econometrica, Econometric Society, vol. 85, pages 1033-1063, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diegert, Paul & Jochmans, Koen, 2024. "Nonparametric Identification of Models for Dyadic Data”," TSE Working Papers 24-1574, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bryan S. Graham, 2019. "Network Data," CeMMAP working papers CWP71/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    3. Brice Romuald Gueyap Kounga, 2023. "Nonparametric Regression with Dyadic Data," Papers 2310.12825, arXiv.org.
    4. Bryan S. Graham & Fengshi Niu & James L. Powell, 2019. "Kernel Density Estimation for Undirected Dyadic Data," Papers 1907.13630, arXiv.org.
    5. Bryan S. Graham, 2020. "Sparse network asymptotics for logistic regression," Papers 2010.04703, arXiv.org.
    6. Tadao Hoshino & Daichi Shimamoto & Yasuyuki Todo, 2020. "Accounting for Heterogeneity in Network Formation Behaviour: An Application to Vietnamese SMEs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(5), pages 1042-1067, October.
    7. Jun Sung Kim & Eleonora Patacchini & Pierre M. Picard & Yves Zenou, 2023. "Spatial interactions," Quantitative Economics, Econometric Society, vol. 14(4), pages 1295-1335, November.
    8. Zuckerman, David, 2024. "Multidimensional homophily," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 486-513.
    9. Bryan S. Graham, 2019. "Dyadic Regression," Papers 1908.09029, arXiv.org.
    10. Bryan S. Graham, 2014. "An econometric model of link formation with degree heterogeneity," NBER Working Papers 20341, National Bureau of Economic Research, Inc.
    11. Alejandro Sanchez-Becerra, 2022. "The Network Propensity Score: Spillovers, Homophily, and Selection into Treatment," Papers 2209.14391, arXiv.org.
    12. Shuyang Sheng, 2020. "A Structural Econometric Analysis of Network Formation Games Through Subnetworks," Econometrica, Econometric Society, vol. 88(5), pages 1829-1858, September.
    13. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    14. Kim, Jun Sung & Patacchini, Eleonora & Picard, Pierre M. & Zenou, Yves, 2017. "Urban Interactions," Working Paper Series 1192, Research Institute of Industrial Economics.
    15. Koen Jochmans & Martin Weidner, 2019. "Fixed‐Effect Regressions on Network Data," Econometrica, Econometric Society, vol. 87(5), pages 1543-1560, September.
    16. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2024. "MCMC conditional maximum likelihood for the two-way fixed-effects logit," Econometric Reviews, Taylor & Francis Journals, vol. 43(6), pages 379-404, July.
    17. Alex Centeno, 2022. "A Structural Model for Detecting Communities in Networks," Papers 2209.08380, arXiv.org, revised Oct 2022.
    18. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
    19. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    20. Eric Auerbach, 2019. "Identification and Estimation of a Partially Linear Regression Model using Network Data," Papers 1903.09679, arXiv.org, revised Jun 2021.

    More about this item

    Keywords

    Networks; Dyads; Kernel density estimation;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:240:y:2024:i:2:s0304407622001610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.