IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.23852.html
   My bibliography  Save this paper

Estimation and Inference in Dyadic Network Formation Models with Nontransferable Utilities

Author

Listed:
  • Ming Li
  • Zhentao Shi
  • Yapeng Zheng

Abstract

This paper studies estimation and inference in a dyadic network formation model with observed covariates, unobserved heterogeneity, and nontransferable utilities. With the presence of the high dimensional fixed effects, the maximum likelihood estimator is numerically difficult to compute and suffers from the incidental parameter bias. We propose an easy-to-compute one-step estimator for the homophily parameter of interest, which is further refined to achieve $\sqrt{N}$-consistency via split-network jackknife and efficiency by the bootstrap aggregating (bagging) technique. We establish consistency for the estimator of the fixed effects and prove asymptotic normality for the unconditional average partial effects. Simulation studies show that our method works well with finite samples, and an empirical application using the risk-sharing data from Nyakatoke highlights the importance of employing proper statistical inferential procedures.

Suggested Citation

  • Ming Li & Zhentao Shi & Yapeng Zheng, 2024. "Estimation and Inference in Dyadic Network Formation Models with Nontransferable Utilities," Papers 2410.23852, arXiv.org.
  • Handle: RePEc:arx:papers:2410.23852
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.23852
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuyang Sheng, 2020. "A Structural Econometric Analysis of Network Formation Games Through Subnetworks," Econometrica, Econometric Society, vol. 88(5), pages 1829-1858, September.
    2. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    3. Miyauchi, Yuhei, 2016. "Structural estimation of pairwise stable networks with nonnegative externality," Journal of Econometrics, Elsevier, vol. 195(2), pages 224-235.
    4. Angelo Mele, 2017. "A Structural Model of Dense Network Formation," Econometrica, Econometric Society, vol. 85, pages 825-850, May.
    5. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    6. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
    7. Cristina Gualdani, 2021. "An Econometric Model of Network Formation with an Application to Board Interlocks between Firms," Post-Print hal-03548907, HAL.
    8. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    9. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    10. Gualdani, Cristina, 2021. "An econometric model of network formation with an application to board interlocks between firms," Journal of Econometrics, Elsevier, vol. 224(2), pages 345-370.
    11. Bryan S. Graham, 2017. "An Econometric Model of Network Formation With Degree Heterogeneity," Econometrica, Econometric Society, vol. 85, pages 1033-1063, July.
    12. Leung, Michael P., 2019. "A weak law for moments of pairwise stable networks," Journal of Econometrics, Elsevier, vol. 210(2), pages 310-326.
    13. Karyne B. Charbonneau, 2017. "Multiple fixed effects in binary response panel data models," Econometrics Journal, Royal Economic Society, vol. 20(3), pages 1-13, October.
    14. Chih‐Sheng Hsieh & Lung Fei Lee, 2016. "A Social Interactions Model with Endogenous Friendship Formation and Selectivity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 301-319, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candelaria, Luis E. & Ura, Takuya, 2023. "Identification and inference of network formation games with misclassified links," Journal of Econometrics, Elsevier, vol. 235(2), pages 862-891.
    2. Gao, Wayne Yuan & Li, Ming & Xu, Sheng, 2023. "Logical differencing in dyadic network formation models with nontransferable utilities," Journal of Econometrics, Elsevier, vol. 235(1), pages 302-324.
    3. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    4. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    5. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    6. Áureo de Paula, 2020. "Econometric Models of Network Formation," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 775-799, August.
    7. St'ephane Bonhomme & Kevin Dano, 2023. "Functional Differencing in Networks," Papers 2307.11484, arXiv.org.
    8. Alex Centeno, 2022. "A Structural Model for Detecting Communities in Networks," Papers 2209.08380, arXiv.org, revised Oct 2022.
    9. Bryan S. Graham, 2019. "Network Data," CeMMAP working papers CWP71/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Luis E. Candelaria, 2020. "A Semiparametric Network Formation Model with Unobserved Linear Heterogeneity," Papers 2007.05403, arXiv.org, revised Aug 2020.
    11. Gualdani, Cristina, 2021. "An econometric model of network formation with an application to board interlocks between firms," Journal of Econometrics, Elsevier, vol. 224(2), pages 345-370.
    12. Candelaria, Luis E., 2020. "A Semiparametric Network Formation Model with Unobserved Linear Heterogeneity," The Warwick Economics Research Paper Series (TWERPS) 1279, University of Warwick, Department of Economics.
    13. Alonso Alfaro-Urena & Paolo Zacchia, 2024. "Matching to Suppliers in the Production Network: an Empirical Framework," CERGE-EI Working Papers wp775, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    14. Weidner, Martin & Zylkin, Thomas, 2021. "Bias and consistency in three-way gravity models," Journal of International Economics, Elsevier, vol. 132(C).
    15. David W. Hughes, 2021. "Estimating Nonlinear Network Data Models with Fixed Effects," Boston College Working Papers in Economics 1058, Boston College Department of Economics.
    16. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2024. "MCMC conditional maximum likelihood for the two-way fixed-effects logit," Econometric Reviews, Taylor & Francis Journals, vol. 43(6), pages 379-404, July.
    17. Christian Bontemps & Cristina Gualdani & Kevin Remmy, 2023. "Price Competition and Endogenous Product Choice in Networks: Evidence From the US Airline Industry," CRC TR 224 Discussion Paper Series crctr224_2023_400, University of Bonn and University of Mannheim, Germany.
    18. Gualdani, Cristina, 2018. "An Econometric Model of Network Formation with an Application to Board Interlocks between Firms," TSE Working Papers 17-898, Toulouse School of Economics (TSE), revised Jul 2019.
    19. Gao, Wayne Yuan, 2020. "Nonparametric identification in index models of link formation," Journal of Econometrics, Elsevier, vol. 215(2), pages 399-413.
    20. L. Sanna Stephan, 2024. "Semiparametric Estimation of Individual Coefficients in a Dyadic Link Formation Model Lacking Observable Characteristics," Papers 2408.04552, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.23852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.