IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.02619.html
   My bibliography  Save this paper

Regret-Optimized Portfolio Enhancement through Deep Reinforcement Learning and Future Looking Rewards

Author

Listed:
  • Daniil Karzanov
  • Rub'en Garz'on
  • Mikhail Terekhov
  • Caglar Gulcehre
  • Thomas Raffinot
  • Marcin Detyniecki

Abstract

This paper introduces a novel agent-based approach for enhancing existing portfolio strategies using Proximal Policy Optimization (PPO). Rather than focusing solely on traditional portfolio construction, our approach aims to improve an already high-performing strategy through dynamic rebalancing driven by PPO and Oracle agents. Our target is to enhance the traditional 60/40 benchmark (60% stocks, 40% bonds) by employing the Regret-based Sharpe reward function. To address the impact of transaction fee frictions and prevent signal loss, we develop a transaction cost scheduler. We introduce a future-looking reward function and employ synthetic data training through a circular block bootstrap method to facilitate the learning of generalizable allocation strategies. We focus on two key evaluation measures: return and maximum drawdown. Given the high stochasticity of financial markets, we train 20 independent agents each period and evaluate their average performance against the benchmark. Our method not only enhances the performance of the existing portfolio strategy through strategic rebalancing but also demonstrates strong results compared to other baselines.

Suggested Citation

  • Daniil Karzanov & Rub'en Garz'on & Mikhail Terekhov & Caglar Gulcehre & Thomas Raffinot & Marcin Detyniecki, 2025. "Regret-Optimized Portfolio Enhancement through Deep Reinforcement Learning and Future Looking Rewards," Papers 2502.02619, arXiv.org.
  • Handle: RePEc:arx:papers:2502.02619
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.02619
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jos'e-Manuel Pe~na & Fernando Su'arez & Omar Larr'e & Domingo Ram'irez & Arturo Cifuentes, 2023. "A Modified CTGAN-Plus-Features Based Method for Optimal Asset Allocation," Papers 2302.02269, arXiv.org, revised May 2024.
    2. Andersson, Henrik & Scholtz, Henrik & Zheng, Jiakun, 2023. "Measuring regret theory in the health and financial domain," TSE Working Papers 23-1449, Toulouse School of Economics (TSE).
    3. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    4. José-Manuel Peña & Fernando Suárez & Omar Larré & Domingo Ramírez & Arturo Cifuentes, 2024. "A modified CTGAN-plus-features-based method for optimal asset allocation," Quantitative Finance, Taylor & Francis Journals, vol. 24(3-4), pages 465-479, April.
    5. Chung I Lu, 2023. "Evaluation of Deep Reinforcement Learning Algorithms for Portfolio Optimisation," Papers 2307.07694, arXiv.org, revised Jul 2023.
    6. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    7. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    8. Brini, Alessio & Tantari, Daniele, 2023. "Deep reinforcement trading with predictable returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    9. Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
    10. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    11. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    12. Joost Driessen & Pascal J. Maenhout & Grigory Vilkov, 2009. "The Price of Correlation Risk: Evidence from Equity Options," Journal of Finance, American Finance Association, vol. 64(3), pages 1377-1406, June.
    13. Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Bridging the gap between Markowitz planning and deep reinforcement learning," Papers 2010.09108, arXiv.org.
    14. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    15. Bernardo K. Pagnoncelli & Domingo Ramírez & Hamed Rahimian & Arturo Cifuentes, 2023. "A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 187-204, June.
    16. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    17. Miquel Noguer i Alonso & Sonam Srivastava, 2020. "Deep Reinforcement Learning for Asset Allocation in US Equities," Papers 2010.04404, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoren Zhu & Pengfei Zhao & Wilfred Siu Hung NG & Dik Lun Lee, 2024. "Financial Assets Dependency Prediction Utilizing Spatiotemporal Patterns," Papers 2406.11886, arXiv.org.
    2. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    3. Xiangyu Cui & Xun Li & Yun Shi & Si Zhao, 2023. "Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning," Papers 2312.15385, arXiv.org.
    4. Bouyaddou, Youssef & Jebabli, Ikram, 2025. "Integration of investor behavioral perspective and climate change in reinforcement learning for portfolio optimization," Research in International Business and Finance, Elsevier, vol. 73(PB).
    5. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    6. Wu, Bo & Li, Lingfei, 2024. "Reinforcement learning for continuous-time mean-variance portfolio selection in a regime-switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    7. Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
    8. Konrad Mueller & Amira Akkari & Lukas Gonon & Ben Wood, 2024. "Fast Deep Hedging with Second-Order Optimization," Papers 2410.22568, arXiv.org.
    9. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    10. Guojun Xiong & Zhiyang Deng & Keyi Wang & Yupeng Cao & Haohang Li & Yangyang Yu & Xueqing Peng & Mingquan Lin & Kaleb E Smith & Xiao-Yang Liu & Jimin Huang & Sophia Ananiadou & Qianqian Xie, 2025. "FLAG-Trader: Fusion LLM-Agent with Gradient-based Reinforcement Learning for Financial Trading," Papers 2502.11433, arXiv.org, revised Feb 2025.
    11. Horikawa, Hiroaki & Nakagawa, Kei, 2024. "Relationship between deep hedging and delta hedging: Leveraging a statistical arbitrage strategy," Finance Research Letters, Elsevier, vol. 62(PA).
    12. Brini, Alessio & Tantari, Daniele, 2023. "Deep reinforcement trading with predictable returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    13. Yuheng Zheng & Zihan Ding, 2024. "Reinforcement Learning in High-frequency Market Making," Papers 2407.21025, arXiv.org, revised Aug 2024.
    14. Xiao-Yang Liu & Hongyang Yang & Jiechao Gao & Christina Dan Wang, 2021. "FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance," Papers 2111.09395, arXiv.org.
    15. Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
    16. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    17. Ricard Durall, 2022. "Asset Allocation: From Markowitz to Deep Reinforcement Learning," Papers 2208.07158, arXiv.org.
    18. Woosung Koh & Insu Choi & Yuntae Jang & Gimin Kang & Woo Chang Kim, 2023. "Curriculum Learning and Imitation Learning for Model-free Control on Financial Time-series," Papers 2311.13326, arXiv.org, revised Jan 2024.
    19. Xianhua Peng & Chenyin Gong & Xue Dong He, 2023. "Reinforcement Learning for Financial Index Tracking," Papers 2308.02820, arXiv.org, revised Nov 2024.
    20. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Is the difference between deep hedging and delta hedging a statistical arbitrage?," Papers 2407.14736, arXiv.org, revised Oct 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.02619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.