IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v31y1989i2p237-250.html
   My bibliography  Save this article

Estimation for first-order autoregressive processes with positive or bounded innovations

Author

Listed:
  • Davis, Richard A.
  • McCormick, William P.

Abstract

We consider estimates motivated by extreme value theory for the correlation parameter of a first-order autoregressive process whose innovation distribution F is either positive or supported on a finite interval. In the positive support case, F is assumed to be regularly varying at zero, whereas in the finite support case, F is assumed to be regularly varying at the two endpoints of the support. Examples include the exponential distribution and the uniform distribution on [-1, 1 ]. The limit distribution of the proposed estimators is derived using point process techniques. These estimators can be vastly superior to the classical least squares estimator especially when the exponent of regular variation is small.

Suggested Citation

  • Davis, Richard A. & McCormick, William P., 1989. "Estimation for first-order autoregressive processes with positive or bounded innovations," Stochastic Processes and their Applications, Elsevier, vol. 31(2), pages 237-250, April.
  • Handle: RePEc:eee:spapps:v:31:y:1989:i:2:p:237-250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(89)90090-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brown, Tim C. & Feigin, Paul D. & Pallant, Diana L., 1996. "Estimation for a class of positive nonlinear time series models," Stochastic Processes and their Applications, Elsevier, vol. 63(2), pages 139-152, November.
    2. Preve, Daniel, 2015. "Linear programming-based estimators in nonnegative autoregression," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 225-234.
    3. Preve, Daniel & Medeiros, Marcelo C., 2011. "Linear programming-based estimators in simple linear regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 128-136.
    4. Ching-Kang Ing & Chiao-Yi Yang, 2014. "Predictor Selection for Positive Autoregressive Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 243-253, March.
    5. Anders Eriksson & Daniel P. A. Preve & Jun Yu, 2019. "Forecasting Realized Volatility Using a Nonnegative Semiparametric Model," JRFM, MDPI, vol. 12(3), pages 1-23, August.
    6. J. Zhou & I. V. Basawa, 2005. "Maximum Likelihood Estimation for a First‐Order Bifurcating Autoregressive Process with Exponential Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 825-842, November.
    7. Zhang, Chenhua, 2011. "Parameter estimation for first-order bifurcating autoregressive processes with Weibull innovations," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1961-1969.
    8. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Allen, Michael R. & Datta, Somnath, 1999. "Estimation of the index parameter for autoregressive data using the estimated innovations," Statistics & Probability Letters, Elsevier, vol. 41(3), pages 315-324, February.
    10. Isabel Pereira & M. Antonia Amaral-Turkman, 2004. "Bayesian prediction in threshold autoregressive models with exponential white noise," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 45-64, June.
    11. Vicky Fasen & Florian Fuchs, 2013. "Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 532-551, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:31:y:1989:i:2:p:237-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.