IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.02214.html
   My bibliography  Save this paper

Efficient estimation of average treatment effects with unmeasured confounding and proxies

Author

Listed:
  • Chunrong Ai
  • Jiawei Shan

Abstract

One approach to estimating the average treatment effect in binary treatment with unmeasured confounding is the proximal causal inference, which assumes the availability of outcome and treatment confounding proxies. The key identifying result relies on the existence of a so-called bridge function. A parametric specification of the bridge function is usually postulated and estimated using standard techniques. The estimated bridge function is then plugged in to estimate the average treatment effect. This approach may have two efficiency losses. First, the bridge function may not be efficiently estimated since it solves an integral equation. Second, the sequential procedure may fail to account for the correlation between the two steps. This paper proposes to approximate the integral equation with increasing moment restrictions and jointly estimate the bridge function and the average treatment effect. Under sufficient conditions, we show that the proposed estimator is efficient. To assist implementation, we propose a data-driven procedure for selecting the tuning parameter (i.e., number of moment restrictions). Simulation studies reveal that the proposed method performs well in finite samples, and application to the right heart catheterization dataset from the SUPPORT study demonstrates its practical value.

Suggested Citation

  • Chunrong Ai & Jiawei Shan, 2025. "Efficient estimation of average treatment effects with unmeasured confounding and proxies," Papers 2501.02214, arXiv.org.
  • Handle: RePEc:arx:papers:2501.02214
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.02214
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.02214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.