IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.19020.html
   My bibliography  Save this paper

Travelling wave solutions of an equation of Harry Dym type arising in the Black-Scholes framework

Author

Listed:
  • Jorge P. Zubelli
  • Kuldeep Singh
  • Vinicius Albani
  • Ioannis Kourakis

Abstract

The Black-Scholes framework is crucial in pricing a vast number of financial instruments that permeate the complex dynamics of world markets. Associated with this framework, we consider a second-order differential operator $L(x, {\partial_x}) := v^2(x,t) (\partial_x^2 -\partial_x)$ that carries a variable volatility term $v(x,t)$ and which is dependent on the underlying log-price $x$ and a time parameter $t$ motivated by the celebrated Dupire local volatility model. In this context, we ask and answer the question of whether one can find a non-linear evolution equation derived from a zero-curvature condition for a time-dependent deformation of the operator $L$. The result is a variant of the Harry Dym equation for which we can then find a family of travelling wave solutions. This brings in extensive machinery from soliton theory and integrable systems. As a by-product, it opens up the way to the use of coherent structures in financial-market volatility studies.

Suggested Citation

  • Jorge P. Zubelli & Kuldeep Singh & Vinicius Albani & Ioannis Kourakis, 2024. "Travelling wave solutions of an equation of Harry Dym type arising in the Black-Scholes framework," Papers 2412.19020, arXiv.org.
  • Handle: RePEc:arx:papers:2412.19020
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.19020
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanka N. Horvath, 2023. "Golden jubilee for an iconic financial formula," Nature, Nature, vol. 618(7964), pages 243-245, June.
    2. Vinicius Albani & Adriano De Cezaro & Jorge P. Zubelli, 2017. "Convex Regularization Of Local Volatility Estimation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-37, February.
    3. Marco Avellaneda, 1998. "Minimum-Relative-Entropy Calibration of Asset-Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 447-472.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Emanuel Derman & Iraj Kani & Joseph Z. Zou, 1996. "The Local Volatility Surface: Unlocking the Information in Index Option Prices," Financial Analysts Journal, Taylor & Francis Journals, vol. 52(4), pages 25-36, July.
    6. Yves Achdou & Olivier Pironneau, 2005. "Numerical Procedure for Calibration of Volatility with American Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(3), pages 201-241.
    7. Vinicius V. L. Albani & Jorge P. Zubelli, 2020. "A splitting strategy for the calibration of jump-diffusion models," Finance and Stochastics, Springer, vol. 24(3), pages 677-722, July.
    8. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2005. "Option pricing and Esscher transform under regime switching," Annals of Finance, Springer, vol. 1(4), pages 423-432, October.
    2. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    3. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    4. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    5. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    6. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    7. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    8. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    9. Marcin Kacperczyk & Paul Damien & Stephen G. Walker, 2013. "A new class of Bayesian semi-parametric models with applications to option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 967-980, May.
    10. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    11. Shane Barratt & Jonathan Tuck & Stephen Boyd, 2020. "Convex Optimization Over Risk-Neutral Probabilities," Papers 2003.02878, arXiv.org.
    12. Tu, Teng-Tsai, 1998. "An entropic approach to equity market integration and consumption-based capital asset pricing models," ISU General Staff Papers 1998010108000012895, Iowa State University, Department of Economics.
    13. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
    14. Smimou, K. & Bector, C.R. & Jacoby, G., 2007. "A subjective assessment of approximate probabilities with a portfolio application," Research in International Business and Finance, Elsevier, vol. 21(2), pages 134-160, June.
    15. Smith, Godfrey, 2013. "Simulated testing of nonparametric measure changes for hedging European options," Finance Research Letters, Elsevier, vol. 10(2), pages 93-101.
    16. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    17. Dragan Kukolj & Nikola Gradojevic & Camillo Lento, 2012. "Improving Non-Parametric Option Pricing during the Financial Crisis," Working Paper series 35_12, Rimini Centre for Economic Analysis.
    18. Paul Glasserman & Bin Yu, 2005. "Large Sample Properties of Weighted Monte Carlo Estimators," Operations Research, INFORMS, vol. 53(2), pages 298-312, April.
    19. Silvia Muzzioli, 2010. "Towards a volatility index for the Italian stock market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 10091, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    20. José L. Vilar-Zanón & Olivia Peraita-Ezcurra, 2019. "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 259-276, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.19020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.