IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v10y2013i2p93-101.html
   My bibliography  Save this article

Simulated testing of nonparametric measure changes for hedging European options

Author

Listed:
  • Smith, Godfrey

Abstract

We test the accuracy and hedging performance of the deltas given by a range of nonparametric measure changes. The nonparametric models accurately estimate deltas across a number of asset price dynamics. The optimal nonparametric measure change displays superior estimation bias, which depends on how the models capture the stylised features of the dynamics, moneyness, and time-to-expiry. Differences in estimation error appear negligible. The optimal measure change produces superior static hedging outcomes compared to the Black–Scholes model. Differences in dynamic hedging outcomes are negligible.

Suggested Citation

  • Smith, Godfrey, 2013. "Simulated testing of nonparametric measure changes for hedging European options," Finance Research Letters, Elsevier, vol. 10(2), pages 93-101.
  • Handle: RePEc:eee:finlet:v:10:y:2013:i:2:p:93-101
    DOI: 10.1016/j.frl.2012.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612312000554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2012.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alcock, Jamie & Gray, Philip, 2005. "Dynamic, nonparametric hedging of European style contingent claims using canonical valuation," Finance Research Letters, Elsevier, vol. 2(1), pages 41-50, March.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    4. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    5. Jamie Alcock & Godfrey Smith, 2014. "Testing Alternative Measure Changes in Nonparametric Pricing and Hedging of European Options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(4), pages 320-345, April.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamie Alcock & Godfrey Smith, 2017. "Non-parametric American option valuation using Cressie–Read divergences," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 252-275, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamie Alcock & Godfrey Smith, 2017. "Non-parametric American option valuation using Cressie–Read divergences," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 252-275, May.
    2. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    3. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    4. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    5. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    6. Yu, Xisheng, 2021. "A unified entropic pricing framework of option: Using Cressie-Read family of divergences," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    7. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    8. Jondeau, E. & Rockinger, M., 1998. "Reading the Smile: The Message Conveyed by Methods Which Infer Risk Neutral," Working papers 47, Banque de France.
    9. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    10. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    11. Omid M. Ardakani, 2022. "Option pricing with maximum entropy densities: The inclusion of higher‐order moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1821-1836, October.
    12. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    13. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    14. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    15. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    16. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    17. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    18. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    19. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    20. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.

    More about this item

    Keywords

    Nonparametric; Canonical option pricing; Delta hedging; Greeks;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:10:y:2013:i:2:p:93-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.