IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.14182.html
   My bibliography  Save this paper

Uncertainty Quantification in Portfolio Temperature Alignment

Author

Listed:
  • Hendrik Weichel
  • Aleksandr Zinovev
  • Heikki Haario
  • Martin Simon

Abstract

We present a novel Bayesian framework for quantifying uncertainty in portfolio temperature alignment models, leveraging the X-Degree Compatibility (XDC) approach with the scientifically validated Finite Amplitude Impulse Response (FaIR) climate model. This framework significantly advances the widely adopted linear approaches that use the Transient Climate Response to Cumulative CO2 Emissions (TCRE). Developed in collaboration with right{\deg}, one of the pioneering companies in portfolio temperature alignment, our methodology addresses key sources of uncertainty, including parameter variability and input emission data across diverse decarbonization pathways. By employing adaptive Markov Chain Monte Carlo (MCMC) methods, we provide robust parametric uncertainty quantification for the FaIR model. To enhance computational efficiency, we integrate a deep learning-based emulator, enabling near real-time simulations. Through practical examples, we demonstrate how this framework improves climate risk management and decision-making in portfolio construction by treating uncertainty as a critical feature rather than a constraint. Moreover, our approach identifies the primary sources of uncertainty, offering valuable insights for future research.

Suggested Citation

  • Hendrik Weichel & Aleksandr Zinovev & Heikki Haario & Martin Simon, 2024. "Uncertainty Quantification in Portfolio Temperature Alignment," Papers 2412.14182, arXiv.org.
  • Handle: RePEc:arx:papers:2412.14182
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.14182
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenneth Gillingham & William Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly, 2018. "Modeling Uncertainty in Integrated Assessment of Climate Change: A Multimodel Comparison," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(4), pages 791-826.
    2. Antonietta Mira, 2001. "On Metropolis-Hastings algorithms with delayed rejection," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3-4), pages 231-241.
    3. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    4. Meng Li & David B. Dunson, 2020. "Comparing and Weighting Imperfect Models Using D-Probabilities," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1349-1360, July.
    5. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    6. Schlenker, Wolfram & Taylor, Charles A., 2021. "Market expectations of a warming climate," Journal of Financial Economics, Elsevier, vol. 142(2), pages 627-640.
    7. Dietz, Simon & Venmans, Frank, 2019. "Cumulative carbon emissions and economic policy: In search of general principles," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 108-129.
    8. Avramov, Doron & Cheng, Si & Lioui, Abraham & Tarelli, Andrea, 2022. "Sustainable investing with ESG rating uncertainty," Journal of Financial Economics, Elsevier, vol. 145(2), pages 642-664.
    9. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    10. Flora, Maria & Tankov, Peter, 2023. "Green investment and asset stranding under transition scenario uncertainty," Energy Economics, Elsevier, vol. 124(C).
    11. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coppens, Léo & Venmans, Frank, 2025. "The welfare properties of climate targets," LSE Research Online Documents on Economics 125996, London School of Economics and Political Science, LSE Library.
    2. Koch, Johannes & Leimbach, Marian, 2023. "SSP economic growth projections: Major changes of key drivers in integrated assessment modelling," Ecological Economics, Elsevier, vol. 206(C).
    3. Vivek Srikrishnan & Yawen Guan & Richard S. J. Tol & Klaus Keller, 2022. "Probabilistic projections of baseline twenty-first century CO2 emissions using a simple calibrated integrated assessment model," Climatic Change, Springer, vol. 170(3), pages 1-20, February.
    4. Coppens, Léo & Venmans, Frank, 2023. "The welfare properties of climate targets," LSE Research Online Documents on Economics 120567, London School of Economics and Political Science, LSE Library.
    5. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    6. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    7. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    8. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    9. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    10. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    11. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    12. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    14. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    15. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    16. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    17. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    18. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    19. Fabien Cremona & Sirje Vilbaste & Raoul-Marie Couture & Peeter Nõges & Tiina Nõges, 2017. "Is the future of large shallow lakes blue-green? Comparing the response of a catchment-lake model chain to climate predictions," Climatic Change, Springer, vol. 141(2), pages 347-361, March.
    20. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.14182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.