IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v70y2016icp196-204.html
   My bibliography  Save this article

The role of a representative reinsurer in optimal reinsurance

Author

Listed:
  • Boonen, Tim J.
  • Tan, Ken Seng
  • Zhuang, Sheng Chao

Abstract

In this paper, we consider a one-period optimal reinsurance design model with n reinsurers and an insurer. For very general preferences of the insurer and that all reinsurers use a distortion premium principle, we establish the existence of a representative reinsurer and this in turn facilitates solving the optimal reinsurance problem with multiple reinsurers. The insurer determines its optimal risk that it wants to reinsure via this pricing formula. The risk to be reinsured is then shared by the reinsurers via tranching. The optimal ceded loss functions among multiple reinsurers are derived explicitly under the additional assumptions that the insurer’s preferences are given by an inverse-S shaped distortion risk measure and that the reinsurers’ premium principles are some functions of the Conditional Value-at-Risk. We also demonstrate that under some prescribed conditions, it is never optimal for the insurer to cede its risk to more than two reinsurers.

Suggested Citation

  • Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2016. "The role of a representative reinsurer in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 196-204.
  • Handle: RePEc:eee:insuma:v:70:y:2016:i:c:p:196-204
    DOI: 10.1016/j.insmatheco.2016.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715300640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Rieger & Mei Wang, 2006. "Cumulative prospect theory and the St. Petersburg paradox," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 665-679, August.
    2. Chen, Zengjing & Kulperger, Reg, 2006. "Minimax pricing and Choquet pricing," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 518-528, June.
    3. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Carole Bernard & Xuedong He & Jia-An Yan & Xun Yu Zhou, 2015. "Optimal Insurance Design Under Rank-Dependent Expected Utility," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 154-186, January.
    6. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    7. De Waegenaere, Anja & Kast, Robert & Lapied, Andre, 2003. "Choquet pricing and equilibrium," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 359-370, July.
    8. Jianfa Cong & Ken Seng Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    9. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    10. Carole Bernard & Weidong Tian, 2009. "Optimal Reinsurance Arrangements Under Tail Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 709-725, September.
    11. Jianfa Cong & Ken Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    12. Wu, Xianyi & Wang, Jinglong, 2003. "On Characterization of Distortion Premium Principle," ASTIN Bulletin, Cambridge University Press, vol. 33(1), pages 1-10, May.
    13. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    14. Wu, Xianyi & Zhou, Xian, 2006. "A new characterization of distortion premiums via countable additivity for comonotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 324-334, April.
    15. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    16. Assa, Hirbod, 2015. "On optimal reinsurance policy with distortion risk measures and premiums," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 70-75.
    17. Zhuang, Sheng Chao & Weng, Chengguo & Tan, Ken Seng & Assa, Hirbod, 2016. "Marginal Indemnification Function formulation for optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 65-76.
    18. Young, Virginia R., 1999. "Optimal insurance under Wang's premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 109-122, November.
    19. Zheng, Yanting & Cui, Wei, 2014. "Optimal reinsurance with premium constraint under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 109-120.
    20. Denuit, Michel & Vermandele, Catherine, 1998. "Optimal reinsurance and stop-loss order," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 229-233, July.
    21. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 487-509, November.
    22. Kaluszka, Marek, 2005. "Truncated Stop Loss as Optimal Reinsurance Agreement in One-period Models," ASTIN Bulletin, Cambridge University Press, vol. 35(2), pages 337-349, November.
    23. Jonathan Ingersoll, 2008. "Non‐Monotonicity of the Tversky‐Kahneman Probability‐Weighting Function: A Cautionary Note," European Financial Management, European Financial Management Association, vol. 14(3), pages 385-390, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florin Avram & Sooie-Hoe Loke, 2018. "On Central Branch/Reinsurance Risk Networks: Exact Results and Heuristics," Risks, MDPI, vol. 6(2), pages 1-18, April.
    2. Boonen, Tim J. & Ghossoub, Mario, 2019. "On the existence of a representative reinsurer under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 209-225.
    3. Chang, Vincent Y.L. & Hung, Kuo Ming & Wang, Kili C. & Yang, Sand, 2024. "Information asymmetry in reinsurance through various ceded contracts," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
    4. Mario Ghossoub & Michael B. Zhu & Wing Fung Chong, 2024. "Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures," Papers 2409.05103, arXiv.org.
    5. Asimit, Vali & Boonen, Tim J., 2018. "Insurance with multiple insurers: A game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 267(2), pages 778-790.
    6. Tim J. Boonen, 2016. "Optimal Reinsurance with Heterogeneous Reference Probabilities," Risks, MDPI, vol. 4(3), pages 1-11, July.
    7. Bäuerle, Nicole & Glauner, Alexander, 2018. "Optimal risk allocation in reinsurance networks," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 37-47.
    8. Chen, Lv & Shen, Yang & Su, Jianxi, 2020. "A continuous-time theory of reinsurance chains," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 129-146.
    9. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    10. Liyuan Lin & Fangda Liu & Jingzhen Liu abd Luyang Yu, 2023. "The optimal reinsurance strategy with price-competition between two reinsurers," Papers 2305.00509, arXiv.org.
    11. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.
    12. Reichel, Lukas & Schmeiser, Hato & Schreiber, Florian, 2022. "On the optimal management of counterparty risk in reinsurance contracts," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 374-394.
    13. Nicole Bauerle & Alexander Glauner, 2017. "Optimal Risk Allocation in Reinsurance Networks," Papers 1711.10210, arXiv.org.
    14. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.
    15. Reichel, Lukas & Schmeiser, Hato & Schreiber, Florian, 2021. "Sometimes more, sometimes less: Prudence and the diversification of risky insurance coverage," European Journal of Operational Research, Elsevier, vol. 292(2), pages 770-783.
    16. Boonen, Tim J. & Ghossoub, Mario, 2021. "Optimal reinsurance with multiple reinsurers: Distortion risk measures, distortion premium principles, and heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 23-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boonen, Tim J. & Ghossoub, Mario, 2019. "On the existence of a representative reinsurer under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 209-225.
    2. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    3. Boonen, Tim J. & Ghossoub, Mario, 2021. "Optimal reinsurance with multiple reinsurers: Distortion risk measures, distortion premium principles, and heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 23-37.
    4. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    5. Ambrose Lo & Zhaofeng Tang, 2019. "Pareto-optimal reinsurance policies in the presence of individual risk constraints," Annals of Operations Research, Springer, vol. 274(1), pages 395-423, March.
    6. Ghossoub, Mario & Zhu, Michael B., 2024. "Stackelberg equilibria with multiple policyholders," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 189-201.
    7. Tim J. Boonen, 2016. "Optimal Reinsurance with Heterogeneous Reference Probabilities," Risks, MDPI, vol. 4(3), pages 1-11, July.
    8. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.
    9. Zhuang, Sheng Chao & Weng, Chengguo & Tan, Ken Seng & Assa, Hirbod, 2016. "Marginal Indemnification Function formulation for optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 65-76.
    10. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    11. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    12. Birghila, Corina & Pflug, Georg Ch., 2019. "Optimal XL-insurance under Wasserstein-type ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 30-43.
    13. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    14. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    15. Yuxia Huang & Chuancun Yin, 2018. "A unifying approach to constrained and unconstrained optimal reinsurance," Papers 1807.06892, arXiv.org.
    16. Boonen, Tim J. & Jiang, Wenjun, 2024. "Robust insurance design with distortion risk measures," European Journal of Operational Research, Elsevier, vol. 316(2), pages 694-706.
    17. Asimit, Vali & Boonen, Tim J., 2018. "Insurance with multiple insurers: A game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 267(2), pages 778-790.
    18. Ghossoub, Mario, 2019. "Optimal insurance under rank-dependent expected utility," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 51-66.
    19. Boonen, Tim J. & Jiang, Wenjun, 2022. "Bilateral risk sharing in a comonotone market with rank-dependent utilities," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 361-378.
    20. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:70:y:2016:i:c:p:196-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.