IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.17783.html
   My bibliography  Save this paper

KACDP: A Highly Interpretable Credit Default Prediction Model

Author

Listed:
  • Kun Liu
  • Jin Zhao

Abstract

In the field of finance, the prediction of individual credit default is of vital importance. However, existing methods face problems such as insufficient interpretability and transparency as well as limited performance when dealing with high-dimensional and nonlinear data. To address these issues, this paper introduces a method based on Kolmogorov-Arnold Networks (KANs). KANs is a new type of neural network architecture with learnable activation functions and no linear weights, which has potential advantages in handling complex multi-dimensional data. Specifically, this paper applies KANs to the field of individual credit risk prediction for the first time and constructs the Kolmogorov-Arnold Credit Default Predict (KACDP) model. Experiments show that the KACDP model outperforms mainstream credit default prediction models in performance metrics (ROC_AUC and F1 values). Meanwhile, through methods such as feature attribution scores and visualization of the model structure, the model's decision-making process and the importance of different features are clearly demonstrated, providing transparent and interpretable decision-making basis for financial institutions and meeting the industry's strict requirements for model interpretability. In conclusion, the KACDP model constructed in this paper exhibits excellent predictive performance and satisfactory interpretability in individual credit risk prediction, providing an effective way to address the limitations of existing methods and offering a new and practical credit risk prediction tool for financial institutions.

Suggested Citation

  • Kun Liu & Jin Zhao, 2024. "KACDP: A Highly Interpretable Credit Default Prediction Model," Papers 2411.17783, arXiv.org.
  • Handle: RePEc:arx:papers:2411.17783
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.17783
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2015. "Support vector regression for loss given default modelling," European Journal of Operational Research, Elsevier, vol. 240(2), pages 528-538.
    2. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    3. Rushikesh Handal & Kazuki Matoya & Yunzhuo Wang & Masanori Hirano, 2024. "KANOP: A Data-Efficient Option Pricing Model using Kolmogorov-Arnold Networks," Papers 2410.00419, arXiv.org.
    4. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    2. Piccialli, Veronica & Romero Morales, Dolores & Salvatore, Cecilia, 2024. "Supervised feature compression based on counterfactual analysis," European Journal of Operational Research, Elsevier, vol. 317(2), pages 273-285.
    3. Nazemi, Abdolreza & Fabozzi, Frank J., 2024. "Interpretable machine learning for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 164(C).
    4. Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
    5. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    6. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    7. Chen, Xiaowei & Wang, Gang & Zhang, Xiangting, 2019. "Modeling recovery rate for leveraged loans," Economic Modelling, Elsevier, vol. 81(C), pages 231-241.
    8. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    9. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    10. Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
    11. González, Marta Ramos & Ureña, Antonio Partal & Fernández-Aguado, Pilar Gómez, 2023. "Forecasting for regulatory credit loss derived from the COVID-19 pandemic: A machine learning approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    12. Al-Amin Abba Dabo & Amin Hosseinian-Far, 2023. "An Integrated Methodology for Enhancing Reverse Logistics Flows and Networks in Industry 5.0," Logistics, MDPI, vol. 7(4), pages 1-26, December.
    13. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    14. Simone Narizzano & Marco Orlandi & Antonio Scalia, 2024. "The Bank of Italy’s statistical model for the credit assessment of non-financial firms," Temi di discussione (Economic working papers) 53, Bank of Italy, Economic Research and International Relations Area.
    15. Miao Zhu & Ben-Chang Shia & Meng Su & Jialin Liu, 2024. "Consumer Default Risk Portrait: An Intelligent Management Framework of Online Consumer Credit Default Risk," Mathematics, MDPI, vol. 12(10), pages 1-19, May.
    16. Yusheng Li & Mengyi Sha, 2024. "Two‐stage credit risk prediction framework based on three‐way decisions with automatic threshold learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1263-1277, August.
    17. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    18. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    19. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    20. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.17783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.