IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.00419.html
   My bibliography  Save this paper

KANOP: A Data-Efficient Option Pricing Model using Kolmogorov-Arnold Networks

Author

Listed:
  • Rushikesh Handal
  • Kazuki Matoya
  • Yunzhuo Wang
  • Masanori Hirano

Abstract

Inspired by the recently proposed Kolmogorov-Arnold Networks (KANs), we introduce the KAN-based Option Pricing (KANOP) model to value American-style options, building on the conventional Least Square Monte Carlo (LSMC) algorithm. KANs, which are based on Kolmogorov-Arnold representation theorem, offer a data-efficient alternative to traditional Multi-Layer Perceptrons, requiring fewer hidden layers to achieve a higher level of performance. By leveraging the flexibility of KANs, KANOP provides a learnable alternative to the conventional set of basis functions used in the LSMC model, allowing the model to adapt to the pricing task and effectively estimate the expected continuation value. Using examples of standard American and Asian-American options, we demonstrate that KANOP produces more reliable option value estimates, both for single-dimensional cases and in more complex scenarios involving multiple input variables. The delta estimated by the KANOP model is also more accurate than that obtained using conventional basis functions, which is crucial for effective option hedging. Graphical illustrations further validate KANOP's ability to accurately model the expected continuation value for American-style options.

Suggested Citation

  • Rushikesh Handal & Kazuki Matoya & Yunzhuo Wang & Masanori Hirano, 2024. "KANOP: A Data-Efficient Option Pricing Model using Kolmogorov-Arnold Networks," Papers 2410.00419, arXiv.org.
  • Handle: RePEc:arx:papers:2410.00419
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.00419
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    3. Yangang Chen & Justin W. L. Wan, 2021. "Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 45-67, January.
    4. Masaaki Fujii & Seisho Sato & Akihiko Takahashi, 2015. "An FBSDE Approach to American Option Pricing with an Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 239-260, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Liu & Jin Zhao, 2024. "KACDP: A Highly Interpretable Credit Default Prediction Model," Papers 2411.17783, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
    2. Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Oct 2024.
    3. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    4. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    5. Yunfei Peng & Pengyu Wei & Wei Wei, 2024. "Deep Penalty Methods: A Class of Deep Learning Algorithms for Solving High Dimensional Optimal Stopping Problems," Papers 2405.11392, arXiv.org.
    6. Hatem Ben-Ameur & Michèle Breton & Juan-Manuel Martinez, 2009. "Dynamic Programming Approach for Valuing Options in the GARCH Model," Management Science, INFORMS, vol. 55(2), pages 252-266, February.
    7. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2022. "Deep learning and American options via free boundary framework," Papers 2211.11803, arXiv.org, revised Dec 2022.
    8. Scott B. Laprise & Michael C. Fu & Steven I. Marcus & Andrew E. B. Lim & Huiju Zhang, 2006. "Pricing American-Style Derivatives with European Call Options," Management Science, INFORMS, vol. 52(1), pages 95-110, January.
    9. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2024. "Optimizing Neural Networks for Bermudan Option Pricing: Convergence Acceleration, Future Exposure Evaluation and Interpolation in Counterparty Credit Risk," Papers 2402.15936, arXiv.org.
    10. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2024. "Deep Learning and American Options via Free Boundary Framework," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 979-1022, August.
    11. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    12. Jiefei Yang & Guanglian Li, 2024. "Gradient-enhanced sparse Hermite polynomial expansions for pricing and hedging high-dimensional American options," Papers 2405.02570, arXiv.org.
    13. Hatem Ben-Ameur & Rim Chérif & Bruno Rémillard, 2016. "American-style options in jump-diffusion models: estimation and evaluation," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1313-1324, August.
    14. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    15. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    16. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.
    17. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    18. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    19. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    20. Marta Biancardi & Giovanni Villani, 2017. "Robust Monte Carlo Method for R&D Real Options Valuation," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 481-498, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.00419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.