IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.00419.html
   My bibliography  Save this paper

KANOP: A Data-Efficient Option Pricing Model using Kolmogorov-Arnold Networks

Author

Listed:
  • Rushikesh Handal
  • Kazuki Matoya
  • Yunzhuo Wang
  • Masanori Hirano

Abstract

Inspired by the recently proposed Kolmogorov-Arnold Networks (KANs), we introduce the KAN-based Option Pricing (KANOP) model to value American-style options, building on the conventional Least Square Monte Carlo (LSMC) algorithm. KANs, which are based on Kolmogorov-Arnold representation theorem, offer a data-efficient alternative to traditional Multi-Layer Perceptrons, requiring fewer hidden layers to achieve a higher level of performance. By leveraging the flexibility of KANs, KANOP provides a learnable alternative to the conventional set of basis functions used in the LSMC model, allowing the model to adapt to the pricing task and effectively estimate the expected continuation value. Using examples of standard American and Asian-American options, we demonstrate that KANOP produces more reliable option value estimates, both for single-dimensional cases and in more complex scenarios involving multiple input variables. The delta estimated by the KANOP model is also more accurate than that obtained using conventional basis functions, which is crucial for effective option hedging. Graphical illustrations further validate KANOP's ability to accurately model the expected continuation value for American-style options.

Suggested Citation

  • Rushikesh Handal & Kazuki Matoya & Yunzhuo Wang & Masanori Hirano, 2024. "KANOP: A Data-Efficient Option Pricing Model using Kolmogorov-Arnold Networks," Papers 2410.00419, arXiv.org.
  • Handle: RePEc:arx:papers:2410.00419
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.00419
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    2. Yangang Chen & Justin W. L. Wan, 2021. "Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 45-67, January.
    3. Masaaki Fujii & Seisho Sato & Akihiko Takahashi, 2015. "An FBSDE Approach to American Option Pricing with an Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 239-260, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
    2. Min Dai & Yue Kuen Kwok, 2006. "Characterization Of Optimal Stopping Regions Of American Asian And Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 63-82, January.
    3. Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Oct 2024.
    4. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    5. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    6. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    7. Yunfei Peng & Pengyu Wei & Wei Wei, 2024. "Deep Penalty Methods: A Class of Deep Learning Algorithms for Solving High Dimensional Optimal Stopping Problems," Papers 2405.11392, arXiv.org.
    8. Karakaya, Emrah, 2014. "Finite Element Model of the Innovation Diffusion: An Application to Photovoltaic Systems," INDEK Working Paper Series 2014/6, Royal Institute of Technology, Department of Industrial Economics and Management.
    9. Ben-Ameur, Hatem & Breton, Michele & Francois, Pascal, 2006. "A dynamic programming approach to price installment options," European Journal of Operational Research, Elsevier, vol. 169(2), pages 667-676, March.
    10. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    11. Rongwen Wu & Michael C. Fu, 2003. "Optimal Exercise Policies and Simulation-Based Valuation for American-Asian Options," Operations Research, INFORMS, vol. 51(1), pages 52-66, February.
    12. Hatem Ben-Ameur & Michèle Breton & Juan-Manuel Martinez, 2009. "Dynamic Programming Approach for Valuing Options in the GARCH Model," Management Science, INFORMS, vol. 55(2), pages 252-266, February.
    13. Akihiko Takahashi & Toshihiro Yamada, 2016. "An Asymptotic Expansion for Forward-Backward SDEs: A Malliavin Calculus Approach," CIRJE F-Series CIRJE-F-1009, CIRJE, Faculty of Economics, University of Tokyo.
    14. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2022. "Deep learning and American options via free boundary framework," Papers 2211.11803, arXiv.org, revised Dec 2022.
    15. Scott B. Laprise & Michael C. Fu & Steven I. Marcus & Andrew E. B. Lim & Huiju Zhang, 2006. "Pricing American-Style Derivatives with European Call Options," Management Science, INFORMS, vol. 52(1), pages 95-110, January.
    16. Andrea Pascucci, 2008. "Free boundary and optimal stopping problems for American Asian options," Finance and Stochastics, Springer, vol. 12(1), pages 21-41, January.
    17. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2024. "Optimizing Neural Networks for Bermudan Option Pricing: Convergence Acceleration, Future Exposure Evaluation and Interpolation in Counterparty Credit Risk," Papers 2402.15936, arXiv.org.
    18. Eva Lutkebohmert & Thorsten Schmidt & Julian Sester, 2021. "Robust deep hedging," Papers 2106.10024, arXiv.org, revised Nov 2021.
    19. Christian Beck & Lukas Gonon & Arnulf Jentzen, 2024. "Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations," Partial Differential Equations and Applications, Springer, vol. 5(6), pages 1-47, December.
    20. Karakaya, Emrah, 2016. "Finite Element Method for forecasting the diffusion of photovoltaic systems: Why and how?," Applied Energy, Elsevier, vol. 163(C), pages 464-475.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.00419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.