IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.13372.html
   My bibliography  Save this paper

Clustering with Potential Multidimensionality: Inference and Practice

Author

Listed:
  • Ruonan Xu
  • Luther Yap

Abstract

We show how clustering standard errors in one or more dimensions can be justified in M-estimation when there is sampling or assignment uncertainty. Since existing procedures for variance estimation are either conservative or invalid, we propose a variance estimator that refines a conservative procedure and remains valid. We then interpret environments where clustering is frequently employed in empirical work from our design-based perspective and provide insights on their estimands and inference procedures.

Suggested Citation

  • Ruonan Xu & Luther Yap, 2024. "Clustering with Potential Multidimensionality: Inference and Practice," Papers 2411.13372, arXiv.org.
  • Handle: RePEc:arx:papers:2411.13372
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.13372
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James G. MacKinnon, 2019. "How cluster-robust inference is changing applied econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 52(3), pages 851-881, August.
    2. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021. "Wild Bootstrap and Asymptotic Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
    3. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    4. Andreas Olden & Jarle Møen, 2022. "The triple difference estimator [Semiparametric difference-in-differences estimators]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 531-553.
    5. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    6. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    7. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    8. Kirill Borusyak & Xavier Jaravel & Jann Spiess, 2024. "Revisiting Event-Study Designs: Robust and Efficient Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(6), pages 3253-3285.
    9. Hersch, Joni, 1998. "Compensating Differentials for Gender-Specific Job Injury Risks," American Economic Review, American Economic Association, vol. 88(3), pages 598-627, June.
    10. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
    11. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    12. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    13. Puhani, Patrick A., 2012. "The treatment effect, the cross difference, and the interaction term in nonlinear “difference-in-differences” models," Economics Letters, Elsevier, vol. 115(1), pages 85-87.
    14. Cl'ement de Chaisemartin & Xavier D'Haultf{oe}uille, 2020. "Difference-in-Differences Estimators of Intertemporal Treatment Effects," Papers 2007.04267, arXiv.org, revised Dec 2024.
    15. Marchingiglio, Riccardo & Poyker, Michael, 2019. "The Employment Effects of Gender-Specific Minimum Wage," Working Papers 290, The University of Chicago Booth School of Business, George J. Stigler Center for the Study of the Economy and the State.
    16. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    17. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    18. Harold D Chiang & Yuya Sasaki, 2023. "On Using The Two-Way Cluster-Robust Standard Errors," Papers 2301.13775, arXiv.org.
    19. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2018. "Asymptotic results under multiway clustering," Papers 1807.07925, arXiv.org, revised Aug 2018.
    20. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    21. Natalie Bau, 2021. "Can Policy Change Culture? Government Pension Plans and Traditional Kinship Practices," American Economic Review, American Economic Association, vol. 111(6), pages 1880-1917, June.
    22. Ruonan Xu & Jeffrey M. Wooldridge, 2022. "A Design-Based Approach to Spatial Correlation," Papers 2211.14354, arXiv.org.
    23. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    24. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    25. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    26. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    27. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    28. Heather Antecol & Kelly Bedard & Jenna Stearns, 2018. "Equal but Inequitable: Who Benefits from Gender-Neutral Tenure Clock Stopping Policies?," American Economic Review, American Economic Association, vol. 108(9), pages 2420-2441, September.
    29. Jeffrey M Wooldridge, 2023. "Simple approaches to nonlinear difference-in-differences with panel data," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 31-66.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    2. Bruno Ferman, 2023. "Inference in difference‐in‐differences: How much should we trust in independent clusters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.
    3. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    4. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021. "Wild Bootstrap and Asymptotic Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
    5. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    6. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    7. Kamila Cygan-Rehm, 2022. "Lifetime Consequences of Lost Instructional Time in the Classroom: Evidence from Shortened School Years," CESifo Working Paper Series 9892, CESifo.
    8. Luis Alvarez & Bruno Ferman, 2020. "Inference in Difference-in-Differences with Few Treated Units and Spatial Correlation," Papers 2006.16997, arXiv.org, revised Apr 2023.
    9. Damian Clarke & Kathya Tapia-Schythe, 2021. "Implementing the panel event study," Stata Journal, StataCorp LP, vol. 21(4), pages 853-884, December.
    10. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    11. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    12. Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Oct 2024.
    13. James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2024. "Cluster-robust jackknife and bootstrap inference for binary response models," Papers 2406.00650, arXiv.org.
    14. Arold, W. Benjamin & Woessmann, Ludger & Zierow, Larissa, 2022. "Can Schools Change Religious Attitudes? Evidence from German State Reforms of Compulsory Religious Education," IZA Discussion Papers 14989, Institute of Labor Economics (IZA).
    15. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    16. Wooldridge, Jeffrey M., 2023. "What is a standard error? (And how should we compute it?)," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Costa-Font, Joan & Jiménez-Martín, Sergi & Vilaplana-Prieto, Cristina, 2022. "Do Public Caregiving Subsidies and Supports affect the Provision of Care and Transfers?," Journal of Health Economics, Elsevier, vol. 84(C).
    18. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    19. Kurt Schmidheiny & Sebastian Siegloch, 2023. "On event studies and distributed‐lags in two‐way fixed effects models: Identification, equivalence, and generalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 695-713, August.
    20. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.13372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.