IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.21105.html
   My bibliography  Save this paper

Difference-in-Differences with Time-varying Continuous Treatments using Double/Debiased Machine Learning

Author

Listed:
  • Michel F. C. Haddad
  • Martin Huber
  • Lucas Z. Zhang

Abstract

We propose a difference-in-differences (DiD) method for a time-varying continuous treatment and multiple time periods. Our framework assesses the average treatment effect on the treated (ATET) when comparing two non-zero treatment doses. The identification is based on a conditional parallel trend assumption imposed on the mean potential outcome under the lower dose, given observed covariates and past treatment histories. We employ kernel-based ATET estimators for repeated cross-sections and panel data adopting the double/debiased machine learning framework to control for covariates and past treatment histories in a data-adaptive manner. We also demonstrate the asymptotic normality of our estimation approach under specific regularity conditions. In a simulation study, we find a compelling finite sample performance of undersmoothed versions of our estimators in setups with several thousand observations.

Suggested Citation

  • Michel F. C. Haddad & Martin Huber & Lucas Z. Zhang, 2024. "Difference-in-Differences with Time-varying Continuous Treatments using Double/Debiased Machine Learning," Papers 2410.21105, arXiv.org.
  • Handle: RePEc:arx:papers:2410.21105
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.21105
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    3. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    4. Kirill Borusyak & Xavier Jaravel & Jann Spiess, 2021. "Revisiting Event Study Designs: Robust and Efficient Estimation," Papers 2108.12419, arXiv.org, revised Jan 2024.
    5. Fan, Jianqing & Yao, Qiwei & Tong, Howell, 1996. "Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems," LSE Research Online Documents on Economics 6704, London School of Economics and Political Science, LSE Library.
    6. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    7. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    8. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    9. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    10. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    11. Brantly Callaway & Andrew Goodman-Bacon & Pedro H. C. Sant'Anna, 2021. "Difference-in-Differences with a Continuous Treatment," Papers 2107.02637, arXiv.org, revised Jan 2024.
    12. Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Cl'ement de Chaisemartin & Xavier D'Haultf{oe}uille, 2021. "Two-Way Fixed Effects and Differences-in-Differences with Heterogeneous Treatment Effects: A Survey," Papers 2112.04565, arXiv.org, revised Jun 2022.
    5. Cl'ement de Chaisemartin & Xavier D'Haultfoeuille & F'elix Pasquier & Doulo Sow & Gonzalo Vazquez-Bare, 2022. "Difference-in-Differences Estimators for Treatments Continuously Distributed at Every Period," Papers 2201.06898, arXiv.org, revised Jul 2024.
    6. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    7. Yizhen Xu & Numair Sani & AmirEmad Ghassami & Ilya Shpitser, 2021. "Multiply Robust Causal Mediation Analysis with Continuous Treatments," Papers 2105.09254, arXiv.org, revised Oct 2024.
    8. Lucas Zhang, 2024. "Continuous difference-in-differences with double/debiased machine learning," Papers 2408.10509, arXiv.org.
    9. Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
    10. Kamila Cygan-Rehm, 2022. "Lifetime Consequences of Lost Instructional Time in the Classroom: Evidence from Shortened School Years," CESifo Working Paper Series 9892, CESifo.
    11. Clément de Chaisemartin & Xavier D’Haultfœuille, 2023. "Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a survey," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 1-30.
    12. Ying-Ying Lee & Chu-An Liu, 2024. "Lee Bounds with a Continuous Treatment in Sample Selection," Papers 2411.04312, arXiv.org.
    13. Fabre, Anaïs, 2022. "Robustness of Two-Way Fixed Effects Estimators to Heterogeneous Treatment Effects," TSE Working Papers 22-1362, Toulouse School of Economics (TSE), revised Jun 2023.
    14. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    15. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    16. Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022. "The effect of COVID certificates on vaccine uptake, health outcomes, and the economy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Cannon Cloud & Simon He{ss} & Johannes Kasinger, 2022. "Do shared e-scooter services cause traffic accidents? Evidence from six European countries," Papers 2209.06870, arXiv.org, revised Sep 2022.
    18. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    19. Wei Huang & Oliver Linton & Zheng Zhang, 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Papers 2102.08063, arXiv.org, revised Sep 2021.
    20. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.21105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.