IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.14587.html
   My bibliography  Save this paper

Neuro-Symbolic Traders: Assessing the Wisdom of AI Crowds in Markets

Author

Listed:
  • Namid R. Stillman
  • Rory Baggott

Abstract

Deep generative models are becoming increasingly used as tools for financial analysis. However, it is unclear how these models will influence financial markets, especially when they infer financial value in a semi-autonomous way. In this work, we explore the interplay between deep generative models and market dynamics. We develop a form of virtual traders that use deep generative models to make buy/sell decisions, which we term neuro-symbolic traders, and expose them to a virtual market. Under our framework, neuro-symbolic traders are agents that use vision-language models to discover a model of the fundamental value of an asset. Agents develop this model as a stochastic differential equation, calibrated to market data using gradient descent. We test our neuro-symbolic traders on both synthetic data and real financial time series, including an equity stock, commodity, and a foreign exchange pair. We then expose several groups of neuro-symbolic traders to a virtual market environment. This market environment allows for feedback between the traders belief of the underlying value to the observed price dynamics. We find that this leads to price suppression compared to the historical data, highlighting a future risk to market stability. Our work is a first step towards quantifying the effect of deep generative agents on markets dynamics and sets out some of the potential risks and benefits of this approach in the future.

Suggested Citation

  • Namid R. Stillman & Rory Baggott, 2024. "Neuro-Symbolic Traders: Assessing the Wisdom of AI Crowds in Markets," Papers 2410.14587, arXiv.org.
  • Handle: RePEc:arx:papers:2410.14587
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.14587
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.14587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.