Deep Calibration of Market Simulations using Neural Density Estimators and Embedding Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Farmer, J. Doyne & Axtell, Robert L., 2022. "Agent-Based Modeling in Economics and Finance: Past, Present, and Future," INET Oxford Working Papers 2022-10, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Timo Terasvirta & Zhenfang Zhao, 2011.
"Stylized facts of return series, robust estimates and three popular models of volatility,"
Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 67-94.
- Teräsvirta, Timo & Zhao, Zhenfang, 2007. "Stylized Facts of Return Series, Robust Estimates, and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 662, Stockholm School of Economics, revised 01 Aug 2007.
- Majewski, Adam A. & Ciliberti, Stefano & Bouchaud, Jean-Philippe, 2020. "Co-existence of trend and value in financial markets: Estimating an extended Chiarella model," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
- Victor Storchan & Svitlana Vyetrenko & Tucker Balch, 2021. "Learning who is in the market from time series: market participant discovery through adversarial calibration of multi-agent simulators," Papers 2108.00664, arXiv.org.
- Zijian Shi & John Cartlidge, 2023. "Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid Methodology," Papers 2303.00080, arXiv.org.
- Marc Potters & Jean-Philippe Bouchaud, 2001. "More stylized facts of financial markets: leverage effect and downside correlations," Science & Finance (CFM) working paper archive 29960, Science & Finance, Capital Fund Management.
- Kang Gao & Perukrishnen Vytelingum & Stephen Weston & Wayne Luk & Ce Guo, 2022. "Understanding intra-day price formation process by agent-based financial market simulation: calibrating the extended chiarella model," Papers 2208.14207, arXiv.org.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kang Gao & Stephen Weston & Perukrishnen Vytelingum & Namid R. Stillman & Wayne Luk & Ce Guo, 2023. "Deeper Hedging: A New Agent-based Model for Effective Deep Hedging," Papers 2310.18755, arXiv.org.
- Zijian Shi & John Cartlidge, 2024. "Neural stochastic agent‐based limit order book simulation with neural point process and diffusion probabilistic model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Vicente Medina Martínez & Ángel Pardo Tornero, 2012. "Stylized facts of CO2 returns," Working Papers. Serie AD 2012-14, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- Namid R. Stillman & Rory Baggott, 2024. "Neuro-Symbolic Traders: Assessing the Wisdom of AI Crowds in Markets," Papers 2410.14587, arXiv.org.
- Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023.
"Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model,"
Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
- Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2022. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Post-Print hal-03827363, HAL.
- Laurie Davies & Walter Kraemer, 2016.
"Stylized Facts and Simulating Long Range Financial Data,"
CESifo Working Paper Series
5796, CESifo.
- Laurie Davies & Walter Kramer, 2016. "Stylized Facts and Simulating Long Range Financial Data," Papers 1612.05229, arXiv.org.
- Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
- Leovardo Mata Mata & José Antonio Núñez Mora & Ramona Serrano Bautista, 2021. "Multivariate Distribution in the Stock Markets of Brazil, Russia, India, and China," SAGE Open, , vol. 11(2), pages 21582440211, April.
- Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
- Schmitt, Noemi & Westerhoff, Frank, 2021.
"Trend followers, contrarians and fundamentalists: Explaining the dynamics of financial markets,"
Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 117-136.
- Schmitt, Noemi & Westerhoff, Frank H., 2019. "Trend followers, contrarians and fundamentalists: Explaining the dynamics of financial markets," BERG Working Paper Series 151, Bamberg University, Bamberg Economic Research Group.
- Kristoufek, Ladislav, 2014.
"Leverage effect in energy futures,"
Energy Economics, Elsevier, vol. 45(C), pages 1-9.
- Ladislav Kristoufek, 2014. "Leverage effect in energy futures," Papers 1403.0064, arXiv.org.
- Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," FinMaP-Working Papers 17, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Gu, Gao-Feng & Zhou, Wei-Xing, 2007.
"Statistical properties of daily ensemble variables in the Chinese stock markets,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
- Gao-Feng Gu & Wei-Xing Zhou, 2006. "Statistical properties of daily ensemble variables in the Chinese stock markets," Papers physics/0603147, arXiv.org.
- Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
- Qi Nan Zhai, 2015. "Asset Pricing Under Ambiguity and Heterogeneity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2015, January-A.
- Aaron Wheeler & Jeffrey D. Varner, 2023. "Scalable Agent-Based Modeling for Complex Financial Market Simulations," Papers 2312.14903, arXiv.org, revised Jan 2024.
- Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
- Zijian Shi & John Cartlidge, 2023. "Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid Methodology," Papers 2303.00080, arXiv.org.
- Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
- Noemi Schmitt & Ivonne Schwartz & Frank Westerhoff, 2022.
"Heterogeneous speculators and stock market dynamics: a simple agent-based computational model,"
The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1263-1282, October.
- Schmitt, Noemi & Schwartz, Ivonne & Westerhoff, Frank H., 2020. "Heterogeneous speculators and stock market dynamics: A simple agent-based computational model," BERG Working Paper Series 160, Bamberg University, Bamberg Economic Research Group.
- Haas, Markus, 2009. "Persistence in volatility, conditional kurtosis, and the Taylor property in absolute value GARCH processes," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1674-1683, August.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-12-18 (Big Data)
- NEP-CMP-2023-12-18 (Computational Economics)
- NEP-HME-2023-12-18 (Heterodox Microeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.11913. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.