Double Jeopardy and Climate Impact in the Use of Large Language Models: Socio-economic Disparities and Reduced Utility for Non-English Speakers
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nicholas Crafts, 2021. "Artificial intelligence as a general-purpose technology: an historical perspective," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 521-536.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tamay Besiroglu & Nicholas Emery-Xu & Neil Thompson, 2022. "Economic impacts of AI-augmented R&D," Papers 2212.08198, arXiv.org, revised Jan 2023.
- Alexander Cuntz & Carsten Fink & Hansueli Stamm, 2024. "Artificial Intelligence and Intellectual Property : An Economic Perspective," WIPO Economic Research Working Papers 77, World Intellectual Property Organization - Economics and Statistics Division.
- Caleb Peppiatt, 2024. "The Future of Work: Inequality, Artificial Intelligence, and What Can Be Done About It. A Literature Review," Papers 2408.13300, arXiv.org.
- Manuel Hoffmann & Sam Boysel & Frank Nagle & Sida Peng & Kevin Xu, 2024. "Generative AI and the Nature of Work," CESifo Working Paper Series 11479, CESifo.
- Siddharth Madhav Joshi & Anubha Shekhar Sinha, 2023. "Knowledge as practice - How Artificial Intelligence can create new knowledge?," Working papers 550, Indian Institute of Management Kozhikode.
- Jacques Bughin & Nicolas van Zeebroeck, 2024. "Strategic Renewal and Corporate Return of Digital Transformation," Working Papers TIMES² 2024-071, ULB -- Universite Libre de Bruxelles.
- Agrawal, Ajay & McHale, John & Oettl, Alexander, 2024.
"Artificial intelligence and scientific discovery: a model of prioritized search,"
Research Policy, Elsevier, vol. 53(5).
- Ajay K. Agrawal & John McHale & Alexander Oettl, 2023. "Artificial Intelligence and Scientific Discovery: A Model of Prioritized Search," NBER Working Papers 31558, National Bureau of Economic Research, Inc.
- Besiroglu, Tamay & Emery-Xu, Nicholas & Thompson, Neil, 2024. "Economic impacts of AI-augmented R&D," Research Policy, Elsevier, vol. 53(7).
- Wang, Linhui & Cao, Zhanglu & Dong, Zhiqing, 2023. "Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 342-356.
- Jaehyuk Park, 2024. "Analyzing the direct role of governmental organizations in artificial intelligence innovation," The Journal of Technology Transfer, Springer, vol. 49(2), pages 437-465, April.
- Kerstin Hotte & Taheya Tarannum & Vilhelm Verendel & Lauren Bennett, 2022. "Measuring artificial intelligence: a systematic assessment and implications for governance," Papers 2204.10304, arXiv.org, revised Dec 2024.
- Kim Nguyen & Jonathan Hambur, 2023. "Adoption of Emerging Digital General-purpose Technologies: Determinants and Effects," RBA Research Discussion Papers rdp2023-10, Reserve Bank of Australia.
- Waßenhoven, Anna & Rennings, Michael & Laibach, Natalie & Bröring, Stefanie, 2023. "What constitutes a “Key Enabling Technology” for transition processes: Insights from the bioeconomy's technological landscape," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
- Xin Du & Hengming Zhang & Yawen Han, 2022. "How Does New Infrastructure Investment Affect Economic Growth Quality? Empirical Evidence from China," Sustainability, MDPI, vol. 14(6), pages 1-30, March.
- Zhai, Shaoxuan & Liu, Zhenpeng, 2023. "Artificial intelligence technology innovation and firm productivity: Evidence from China," Finance Research Letters, Elsevier, vol. 58(PB).
- Daniel Souza & Aldo Geuna & Jeff Rodr'iguez, 2024. "How Small is Big Enough? Open Labeled Datasets and the Development of Deep Learning," Papers 2408.10359, arXiv.org.
- Benjamin Laufer & Jon Kleinberg & Hoda Heidari, 2023. "Fine-Tuning Games: Bargaining and Adaptation for General-Purpose Models," Papers 2308.04399, arXiv.org, revised Dec 2024.
- Inha Oh & Jungho Kim, 2023. "Frontiers and laggards: Which firms benefit from adopting advanced digital technologies?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 753-766, March.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-AIN-2024-11-18 (Artificial Intelligence)
- NEP-CMP-2024-11-18 (Computational Economics)
- NEP-ENV-2024-11-18 (Environmental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.10665. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.