IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.03552.html
   My bibliography  Save this paper

Evaluating Investment Risks in LATAM AI Startups: Ranking of Investment Potential and Framework for Valuation

Author

Listed:
  • Abraham Ramos-Torres
  • Laura N. Montoya

Abstract

The growth of the tech startup ecosystem in Latin America (LATAM) is driven by innovative entrepreneurs addressing market needs across various sectors. However, these startups encounter unique challenges and risks that require specific management approaches. This paper explores a case study with the Total Addressable Market (TAM), Serviceable Available Market (SAM), and Serviceable Obtainable Market (SOM) metrics within the context of the online food delivery industry in LATAM, serving as a model for valuing startups using the Discounted Cash Flow (DCF) method. By analyzing key emerging powers such as Argentina, Colombia, Uruguay, Costa Rica, Panama, and Ecuador, the study highlights the potential and profitability of AI-driven startups in the region through the development of a ranking of emerging powers in Latin America for tech startup investment. The paper also examines the political, economic, and competitive risks faced by startups and offers strategic insights on mitigating these risks to maximize investment returns. Furthermore, the research underscores the value of diversifying investment portfolios with startups in emerging markets, emphasizing the opportunities for substantial growth and returns despite inherent risks.

Suggested Citation

  • Abraham Ramos-Torres & Laura N. Montoya, 2024. "Evaluating Investment Risks in LATAM AI Startups: Ranking of Investment Potential and Framework for Valuation," Papers 2410.03552, arXiv.org.
  • Handle: RePEc:arx:papers:2410.03552
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.03552
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.03552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.