IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.19385.html
   My bibliography  Save this paper

PDSim: A Shiny App for Polynomial Diffusion Model Simulation and Estimation

Author

Listed:
  • Peilun He
  • Nino Kordzakhia
  • Gareth W. Peters
  • Pavel V. Shevchenko

Abstract

PDSim is an R package that enables users to simulate commodity futures prices using the polynomial diffusion model introduced in Filipovic and Larsson (2016) through both a Shiny web application and R scripts. It also provides state variables and contract estimations via the Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF). With its user-friendly interface, PDSim makes the features of simulations and estimations accessible to all users. To date, it is the only package specifically designed for the simulation and estimation of the polynomial diffusion model. Additionally, the package integrates the Schwartz and Smith two-factor model (Schwartz & Smith, 2000) as an alternative approach. PDSim offers versatile deployment options, including running locally, via the Shiny server, or through Docker.

Suggested Citation

  • Peilun He & Nino Kordzakhia & Gareth W. Peters & Pavel V. Shevchenko, 2024. "PDSim: A Shiny App for Polynomial Diffusion Model Simulation and Estimation," Papers 2409.19385, arXiv.org.
  • Handle: RePEc:arx:papers:2409.19385
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.19385
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xi Kleisinger-Yu & Vlatka Komaric & Martin Larsson & Markus Regez, 2019. "A multi-factor polynomial framework for long-term electricity forwards with delivery period," Papers 1908.08954, arXiv.org, revised Jun 2020.
    2. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    3. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    4. Ames, Matthew & Bagnarosa, Guillaume & Matsui, Tomoko & Peters, Gareth W. & Shevchenko, Pavel V., 2020. "Which risk factors drive oil futures price curves?," Energy Economics, Elsevier, vol. 87(C).
    5. Peilun He & Nino Kordzakhia & Gareth W. Peters & Pavel V. Shevchenko, 2024. "Multi-Factor Polynomial Diffusion Models and Inter-Temporal Futures Dynamics," Papers 2409.19386, arXiv.org.
    6. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    7. Mihaela Manoliu & Stathis Tompaidis, 2002. "Energy futures prices: term structure models with Kalman filter estimation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 21-43.
    8. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    9. Benjamin Favetto & Adeline Samson, 2010. "Parameter Estimation for a Bidimensional Partially Observed Ornstein–Uhlenbeck Process with Biological Application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 200-220, June.
    10. Matthew Ames & Guillaume Bagnarosa & Tomoko Matsui & Gareth W. Peters & Pavel V. Shevchenko, 2020. "Which risk factors drive oil futures price curves?," Post-Print hal-02779870, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    2. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Jumps in commodity markets," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 55-70.
    3. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    4. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    5. Karol Binkowski & Peilun He & Nino Kordzakhia & Pavel Shevchenko, 2021. "On the Parameter Estimation in the Schwartz-Smiths Two-Factor Model," Papers 2108.01881, arXiv.org.
    6. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    7. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    8. Farkas, Walter & Gourier, Elise & Huitema, Robert & Necula, Ciprian, 2017. "A two-factor cointegrated commodity price model with an application to spread option pricing," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 249-268.
    9. Paschke, Raphael & Prokopczuk, Marcel, 2007. "Integrating Multiple Commodities in a Model of Stochastic Price Dynamics," MPRA Paper 5412, University Library of Munich, Germany.
    10. Cortazar, Gonzalo & Eterovic, Francisco, 2010. "Can oil prices help estimate commodity futures prices? The cases of copper and silver," Resources Policy, Elsevier, vol. 35(4), pages 283-291, December.
    11. Han Jun S. & Kordzakhia Nino & Shevchenko Pavel V. & Trück Stefan, 2022. "On correlated measurement errors in the Schwartz–Smith two-factor model," Dependence Modeling, De Gruyter, vol. 10(1), pages 108-122, January.
    12. Suenaga, Hiroaki, 2013. "Measuring bias in a term-structure model of commodity prices through the comparison of simultaneous and sequential estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 53-66.
    13. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
    14. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    15. Fernando Antonio Lucena Aiube & Ariel Levy, 2019. "Recent movement of oil prices and future scenarios [Movimentos recentes dos preços do petróleo e os cenários futuros]," Nova Economia, Economics Department, Universidade Federal de Minas Gerais (Brazil), vol. 29(1), pages 223-248, January-A.
    16. Hahn, Warren J. & DiLellio, James A. & Dyer, James S., 2014. "What do market-calibrated stochastic processes indicate about the long-term price of crude oil?," Energy Economics, Elsevier, vol. 44(C), pages 212-221.
    17. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    18. Jilong Chen & Christian Ewald & Ruolan Ouyang & Sjur Westgaard & Xiaoxia Xiao, 2022. "Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: the case of Brent crude oil," Annals of Operations Research, Springer, vol. 313(1), pages 29-46, June.
    19. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    20. Ames, Matthew & Bagnarosa, Guillaume & Matsui, Tomoko & Peters, Gareth W. & Shevchenko, Pavel V., 2020. "Which risk factors drive oil futures price curves?," Energy Economics, Elsevier, vol. 87(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.19385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.