IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/5412.html
   My bibliography  Save this paper

Integrating Multiple Commodities in a Model of Stochastic Price Dynamics

Author

Listed:
  • Paschke, Raphael
  • Prokopczuk, Marcel

Abstract

In this paper we develop a multi-factor model for the joint dynamics of related commodity spot prices in continuous time. We contribute to the existing literature by simultaneously considering various commodity markets in a single, consistent model. In an application we show the economic significance of our approach. We assume that the spot price processes can be characterized by the weighted sum of latent factors. Employing an essentially-affine model structure allows for rich dependencies among the latent factors and thus, the commodity prices. The co-integrated behavior between the different spot price dynamics is explicitly taken into account. Within this framework we derive closed-form solutions of futures prices. The Kalman Filter methodology is applied to estimate the model for crude oil, heating oil and gasoline futures contracts traded on the NYMEX. Empirically, we are able to identify a common non-stationary equilibrium factor driving the long-term price behavior and stationary factors affecting all three markets in a common way. Additionally, we identify factors which only impact subsets of the commodities considered. To demonstrate the economic consequences of our integrated approach, we evaluate the investment into a refinery from a financial management perspective and compare the results with an approach neglecting the co-movement of prices. This negligence leads to radical changes in the project's assessment.

Suggested Citation

  • Paschke, Raphael & Prokopczuk, Marcel, 2007. "Integrating Multiple Commodities in a Model of Stochastic Price Dynamics," MPRA Paper 5412, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:5412
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/5412/1/MPRA_paper_5412.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    3. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    4. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    5. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    6. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    7. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    8. Bryan R. Routledge & Duane J. Seppi & Chester S. Spatt, 2000. "Equilibrium Forward Curves for Commodities," Journal of Finance, American Finance Association, vol. 55(3), pages 1297-1338, June.
    9. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    10. Miltersen, Kristian R. & Schwartz, Eduardo S., 1998. "Pricing of Options on Commodity Futures with Stochastic Term Structures of Convenience Yields and Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 33-59, March.
    11. Mihaela Manoliu & Stathis Tompaidis, 2002. "Energy futures prices: term structure models with Kalman filter estimation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 21-43.
    12. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    13. Dai, Qiang & Singleton, Kenneth J., 2002. "Expectation puzzles, time-varying risk premia, and affine models of the term structure," Journal of Financial Economics, Elsevier, vol. 63(3), pages 415-441, March.
    14. Hannan, E J & Terrell, R D & Tuckwell, N E, 1970. "The Seasonal Adjustment of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(1), pages 24-52, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.
    2. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    3. Kovacevic, Raimund M. & Paraschiv, Florentina, 2012. "Medium-term Planning for Thermal Electricity Production," Working Papers on Finance 1220, University of St. Gallen, School of Finance.
    4. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    5. Mahringer, Steffen & Prokopczuk, Marcel, 2015. "An empirical model comparison for valuing crack spread options," Energy Economics, Elsevier, vol. 51(C), pages 177-187.
    6. Jaime Casassus & Peng Liu & Ke Tang, 2011. "Relative Scarcity of Commodities with a Long-Term Economic Relationship and the Correlation of Futures Returns," Documentos de Trabajo 404, Instituto de Economia. Pontificia Universidad Católica de Chile..
    7. Daniel Leonhardt & Antony Ware & Rudi Zagst, 2017. "A Cointegrated Regime-Switching Model Approach with Jumps Applied to Natural Gas Futures Prices," Risks, MDPI, vol. 5(3), pages 1-19, September.
    8. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    9. Marcel Prokopczuk & Yingying Wu, 2013. "Estimating term structure models with the Kalman filter," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 4, pages 97-113, Edward Elgar Publishing.
    10. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    11. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    12. Jaime Casassus & Peng Liu & Ke Tang, 2015. "Maximal Gaussian Affine Models for Multiple Commodities: A Note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(1), pages 75-86, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    2. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    3. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    4. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    5. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    6. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    7. Power, Gabriel J. & Eaves, James & Turvey, Calum & Vedenov, Dmitry, 2017. "Catching the curl: Wavelet thresholding improves forward curve modelling," Economic Modelling, Elsevier, vol. 64(C), pages 312-321.
    8. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    9. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    10. Suenaga, Hiroaki, 2013. "Measuring bias in a term-structure model of commodity prices through the comparison of simultaneous and sequential estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 53-66.
    11. Gareth William Peters & Mark Briers & Pavel Shevchenko & Arnaud Doucet, 2013. "Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 841-874, December.
    12. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    13. Tore S. Kleppe & Atle Oglend, 2019. "Can limits‐to‐arbitrage from bounded storage improve commodity term‐structure modeling?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 865-889, July.
    14. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    15. Gao, Xin & Li, Bingxin & Liu, Rui, 2023. "The relative pricing of WTI and Brent crude oil futures: Expectations or risk premia?," Journal of Commodity Markets, Elsevier, vol. 30(C).
    16. Anders B. Trolle & Eduardo S. Schwartz, 2006. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," NBER Working Papers 12744, National Bureau of Economic Research, Inc.
    17. Power, Gabriel J. & Turvey, Calum G., 2008. "On Term Structure Models of Commodity Futures Prices and the Kaldor-Working Hypothesis," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37608, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    18. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    19. Cortazar, Gonzalo & Lopez, Matias & Naranjo, Lorenzo, 2017. "A multifactor stochastic volatility model of commodity prices," Energy Economics, Elsevier, vol. 67(C), pages 182-201.
    20. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.

    More about this item

    Keywords

    Commodities; Integrated Model; Crude Oil; Heating Oil; Gasoline; Futures; Kalman Filter;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:5412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.