IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v44y2014icp212-221.html
   My bibliography  Save this article

What do market-calibrated stochastic processes indicate about the long-term price of crude oil?

Author

Listed:
  • Hahn, Warren J.
  • DiLellio, James A.
  • Dyer, James S.

Abstract

Stochastic process models of commodity prices are important inputs in energy investment evaluation and planning problems. In this paper, we focus on modeling and forecasting the long-term price level, since it is the dominant factor in many such applications. To provide a foundation for our modeling approach we first evaluate the empirical characteristics of crude oil price data from 1990 to 2013 using unit root and variance ratio tests. Statistical evidence from these tests shows only weak support for the applicability of stationary mean-reverting type processes up through 2004, with non-stationary Brownian motion type processes becoming more plausible when the data from 2005 to 2013 is added. We then apply a Kalman filtering method with maximum likelihood approach to estimate the model parameters for both a single-factor Geometric Brownian motion (GBM) process as well as the two-factor Schwartz and Smith (2000) process. The latter process decomposes the spot price into unobservable factors for the long-term equilibrium level and short-term deviation, and it accommodates aspects of both a GBM process and a mean-reverting process. Both empirical and simulated data are analyzed with these models, and we quantify the increases in both the drift rate and volatility of these processes that result from developments in the crude oil markets since the middle of the last decade. We conclude by comparing and contrasting both historical accuracy and forecasts from the parameterized models, and show that when the emphasis is on the long-term expectations, a single factor GBM forecast may be sufficient.

Suggested Citation

  • Hahn, Warren J. & DiLellio, James A. & Dyer, James S., 2014. "What do market-calibrated stochastic processes indicate about the long-term price of crude oil?," Energy Economics, Elsevier, vol. 44(C), pages 212-221.
  • Handle: RePEc:eee:eneeco:v:44:y:2014:i:c:p:212-221
    DOI: 10.1016/j.eneco.2014.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314000917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krichene, Noureddine, 2002. "World crude oil and natural gas: a demand and supply model," Energy Economics, Elsevier, vol. 24(6), pages 557-576, November.
    2. Hiroaki Suenaga & Aaron Smith, 2011. "Volatility Dynamics and Seasonality in Energy Prices: Implications for Crack-Spread Price Risk," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 27-58.
    3. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    4. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    5. Chevillon, Guillaume & Rifflart, Christine, 2009. "Physical market determinants of the price of crude oil and the market premium," Energy Economics, Elsevier, vol. 31(4), pages 537-549, July.
    6. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    7. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    8. Dees, Stephane & Karadeloglou, Pavlos & Kaufmann, Robert K. & Sanchez, Marcelo, 2007. "Modelling the world oil market: Assessment of a quarterly econometric model," Energy Policy, Elsevier, vol. 35(1), pages 178-191, January.
    9. Lescaroux, François, 2009. "On the excess co-movement of commodity prices--A note about the role of fundamental factors in short-run dynamics," Energy Policy, Elsevier, vol. 37(10), pages 3906-3913, October.
    10. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    11. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    12. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    13. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
    14. Bhattacharya, Sudipto, 1978. "Project Valuation with Mean-Reverting Cash Flow Streams," Journal of Finance, American Finance Association, vol. 33(5), pages 1317-1331, December.
    15. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    16. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    17. Kaufmann, Robert K. & Dees, Stephane & Gasteuil, Audrey & Mann, Michael, 2008. "Oil prices: The role of refinery utilization, futures markets and non-linearities," Energy Economics, Elsevier, vol. 30(5), pages 2609-2622, September.
    18. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    19. Miller, J. Isaac & Ratti, Ronald A., 2009. "Crude oil and stock markets: Stability, instability, and bubbles," Energy Economics, Elsevier, vol. 31(4), pages 559-568, July.
    20. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-30.
    21. Mihaela Manoliu & Stathis Tompaidis, 2002. "Energy futures prices: term structure models with Kalman filter estimation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 21-43.
    22. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    23. Askari, Hossein & Krichene, Noureddine, 2008. "Oil price dynamics (2002-2006)," Energy Economics, Elsevier, vol. 30(5), pages 2134-2153, September.
    24. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    25. Hilliard, Jimmy E. & Reis, Jorge, 1998. "Valuation of Commodity Futures and Options under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 61-86, March.
    26. Graham Davis, 2012. "Technical Note: Simulating the Two-Factor Schwartz and Smith Model of Commodity Prices," The Engineering Economist, Taylor & Francis Journals, vol. 57(2), pages 130-140.
    27. Meade, Nigel, 2010. "Oil prices -- Brownian motion or mean reversion? A study using a one year ahead density forecast criterion," Energy Economics, Elsevier, vol. 32(6), pages 1485-1498, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ladokhin, Sergiy & Borovkova, Svetlana, 2021. "Three-factor commodity forward curve model and its joint P and Q dynamics," Energy Economics, Elsevier, vol. 101(C).
    2. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    3. Zhou, Fan & Page, Lionel & Perrons, Robert K. & Zheng, Zuduo & Washington, Simon, 2019. "Long-term forecasts for energy commodities price: What the experts think," Energy Economics, Elsevier, vol. 84(C).
    4. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    5. Noshchenko, Olga & Hagspiel, Verena, 2024. "Environmental and economic multi-objective real options analysis: Electrification choices for field development investment planning," Energy, Elsevier, vol. 295(C).
    6. Fedorov, Semyon & Hagspiel, Verena & Rogstad, Richard W.H. & Haseldonckx, Sophie & Haugsgjerd, Johannes H. & Rønning, Anders, 2024. "Evaluation of tieback developments for marginal oil fields with timing flexibility," Energy Economics, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ames, Matthew & Bagnarosa, Guillaume & Matsui, Tomoko & Peters, Gareth W. & Shevchenko, Pavel V., 2020. "Which risk factors drive oil futures price curves?," Energy Economics, Elsevier, vol. 87(C).
    2. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    3. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    4. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    5. Gronwald, Marc, 2012. "A characterization of oil price behavior — Evidence from jump models," Energy Economics, Elsevier, vol. 34(5), pages 1310-1317.
    6. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    7. Sévi, Benoît, 2015. "Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps," Economic Modelling, Elsevier, vol. 44(C), pages 243-251.
    8. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    9. Juri Hinz & Tanya Tarnopolskaya & Jeremy Yee, 2020. "Efficient algorithms of pathwise dynamic programming for decision optimization in mining operations," Annals of Operations Research, Springer, vol. 286(1), pages 583-615, March.
    10. Kang, Boda & Nikitopoulos, Christina Sklibosios & Prokopczuk, Marcel, 2020. "Economic determinants of oil futures volatility: A term structure perspective," Energy Economics, Elsevier, vol. 88(C).
    11. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    12. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
    13. Jilong Chen & Christian Ewald & Ruolan Ouyang & Sjur Westgaard & Xiaoxia Xiao, 2022. "Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: the case of Brent crude oil," Annals of Operations Research, Springer, vol. 313(1), pages 29-46, June.
    14. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Jumps in commodity markets," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 55-70.
    15. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    16. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    17. Gareth William Peters & Mark Briers & Pavel Shevchenko & Arnaud Doucet, 2013. "Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 841-874, December.
    18. Ederington, Louis H. & Fernando, Chitru S. & Hoelscher, Seth A. & Lee, Thomas K. & Linn, Scott C., 2019. "Characteristics of petroleum product prices: A survey," Journal of Commodity Markets, Elsevier, vol. 14(C), pages 1-15.
    19. Ke Tang, 2012. "Time-varying long-run mean of commodity prices and the modeling of futures term structures," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 781-790, April.
    20. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.

    More about this item

    Keywords

    Oil prices; Futures markets; Stochastic processes; Kalman filter; Forecasting;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:44:y:2014:i:c:p:212-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.