IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v93y2013icp53-66.html
   My bibliography  Save this article

Measuring bias in a term-structure model of commodity prices through the comparison of simultaneous and sequential estimation

Author

Listed:
  • Suenaga, Hiroaki

Abstract

This study examines bias in a term-structure model of commodity prices in specifying the true stochastic dynamics of underlying spot price. The bias is quantified by comparing the model estimated by the conventional method of estimating all model parameters simultaneously with a panel of futures prices and the model estimated by an alternative method of estimating model parameters in two steps. In this alternative approach, a subset of model parameters is first estimated on the first difference of observed futures prices so that these parameters are free from bias in specifying deterministic price variation and the dynamics of the underlying state variables. In the second step, the remaining model parameters are estimated on the futures price equations, while holding the parameters estimated in the first step. Empirical applications to four commodities (gold, crude oil, natural gas, and corn) reveal that the two-factor model widely considered in the literature is subject to a misspecification bias of substantial size. Out-of-sample forecast test indicates that, for three of the four commodities considered, the model estimated by the sequential method yields a considerably more accurate price forecast than the model estimated by the simultaneous method.

Suggested Citation

  • Suenaga, Hiroaki, 2013. "Measuring bias in a term-structure model of commodity prices through the comparison of simultaneous and sequential estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 53-66.
  • Handle: RePEc:eee:matcom:v:93:y:2013:i:c:p:53-66
    DOI: 10.1016/j.matcom.2013.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475413000748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2013.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroaki Suenaga & Aaron Smith, 2011. "Volatility Dynamics and Seasonality in Energy Prices: Implications for Crack-Spread Price Risk," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 27-58.
    2. Martin J. Nielsen & Eduardo S. Schwartz, 2004. "Theory of Storage and the Pricing of Commodity Claims," Review of Derivatives Research, Springer, vol. 7(1), pages 5-24.
    3. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    4. Bryan R. Routledge & Duane J. Seppi & Chester S. Spatt, 2000. "Equilibrium Forward Curves for Commodities," Journal of Finance, American Finance Association, vol. 55(3), pages 1297-1338, June.
    5. Williams,Jeffrey C. & Wright,Brian D., 2005. "Storage and Commodity Markets," Cambridge Books, Cambridge University Press, number 9780521023399, October.
    6. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    7. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    8. Aaron Smith, 2005. "Partially overlapping time series: a new model for volatility dynamics in commodity futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 405-422.
    9. Liu, Peng & Tang, Ke, 2011. "The stochastic behavior of commodity prices with heteroskedasticity in the convenience yield," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 211-224, March.
    10. Cortazar, Gonzalo & Schwartz, Eduardo S., 2003. "Implementing a stochastic model for oil futures prices," Energy Economics, Elsevier, vol. 25(3), pages 215-238, May.
    11. Ke Tang, 2012. "Time-varying long-run mean of commodity prices and the modeling of futures term structures," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 781-790, April.
    12. Lee, Yen-Hsien & Hu, Hsu-Ning & Chiou, Jer-Shiou, 2010. "Jump dynamics with structural breaks for crude oil prices," Energy Economics, Elsevier, vol. 32(2), pages 343-350, March.
    13. Mihaela Manoliu & Stathis Tompaidis, 2002. "Energy futures prices: term structure models with Kalman filter estimation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 21-43.
    14. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    15. repec:dau:papers:123456789/5465 is not listed on IDEAS
    16. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    17. Miltersen, Kristian R. & Schwartz, Eduardo S., 1998. "Pricing of Options on Commodity Futures with Stochastic Term Structures of Convenience Yields and Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 33-59, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael McAleer & Felix Chan & Les Oxley, 2013. "Modeling and Simulation: An Overview," Working Papers in Economics 13/18, University of Canterbury, Department of Economics and Finance.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    2. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    3. Cortazar, Gonzalo & Lopez, Matias & Naranjo, Lorenzo, 2017. "A multifactor stochastic volatility model of commodity prices," Energy Economics, Elsevier, vol. 67(C), pages 182-201.
    4. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    5. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    6. Almansour, Abdullah, 2016. "Convenience yield in commodity price modeling: A regime switching approach," Energy Economics, Elsevier, vol. 53(C), pages 238-247.
    7. Gareth William Peters & Mark Briers & Pavel Shevchenko & Arnaud Doucet, 2013. "Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 841-874, December.
    8. Paschke, Raphael & Prokopczuk, Marcel, 2007. "Integrating Multiple Commodities in a Model of Stochastic Price Dynamics," MPRA Paper 5412, University Library of Munich, Germany.
    9. Tore S. Kleppe & Atle Oglend, 2019. "Can limits‐to‐arbitrage from bounded storage improve commodity term‐structure modeling?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 865-889, July.
    10. Gonzalo Cortazar & Simon Gutierrez & Hector Ortega, 2016. "Empirical Performance of Commodity Pricing Models: When is it Worthwhile to Use a Stochastic Volatility Specification?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(5), pages 457-487, May.
    11. Power, Gabriel J. & Turvey, Calum G., 2008. "On Term Structure Models of Commodity Futures Prices and the Kaldor-Working Hypothesis," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37608, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    12. Hiroaki Suenaga, 2013. "A flexible model of term-structure dynamics of commodity prices: a comparative analysis with a two-factor Gaussian model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 509-526, March.
    13. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    14. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    15. Pieroni, Luca & Ricciarelli, Matteo, 2008. "Modelling dynamic storage function in commodity markets: Theory and evidence," Economic Modelling, Elsevier, vol. 25(5), pages 1080-1092, September.
    16. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    17. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    18. Sévi, Benoît, 2015. "Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps," Economic Modelling, Elsevier, vol. 44(C), pages 243-251.
    19. Power, Gabriel J. & Eaves, James & Turvey, Calum & Vedenov, Dmitry, 2017. "Catching the curl: Wavelet thresholding improves forward curve modelling," Economic Modelling, Elsevier, vol. 64(C), pages 312-321.
    20. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:93:y:2013:i:c:p:53-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.