IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.02332.html
   My bibliography  Save this paper

Double Machine Learning at Scale to Predict Causal Impact of Customer Actions

Author

Listed:
  • Sushant More
  • Priya Kotwal
  • Sujith Chappidi
  • Dinesh Mandalapu
  • Chris Khawand

Abstract

Causal Impact (CI) of customer actions are broadly used across the industry to inform both short- and long-term investment decisions of various types. In this paper, we apply the double machine learning (DML) methodology to estimate the CI values across 100s of customer actions of business interest and 100s of millions of customers. We operationalize DML through a causal ML library based on Spark with a flexible, JSON-driven model configuration approach to estimate CI at scale (i.e., across hundred of actions and millions of customers). We outline the DML methodology and implementation, and associated benefits over the traditional potential outcomes based CI model. We show population-level as well as customer-level CI values along with confidence intervals. The validation metrics show a 2.2% gain over the baseline methods and a 2.5X gain in the computational time. Our contribution is to advance the scalable application of CI, while also providing an interface that allows faster experimentation, cross-platform support, ability to onboard new use cases, and improves accessibility of underlying code for partner teams.

Suggested Citation

  • Sushant More & Priya Kotwal & Sujith Chappidi & Dinesh Mandalapu & Chris Khawand, 2024. "Double Machine Learning at Scale to Predict Causal Impact of Customer Actions," Papers 2409.02332, arXiv.org.
  • Handle: RePEc:arx:papers:2409.02332
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.02332
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    4. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    4. Andr'es Ram'irez-Hassan & Raquel Vargas-Correa & Gustavo Garc'ia & Daniel Londo~no, 2020. "Optimal selection of the number of control units in kNN algorithm to estimate average treatment effects," Papers 2008.06564, arXiv.org.
    5. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    6. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    7. Hodula, Martin & Melecký, Martin & Pfeifer, Lukáš & Szabo, Milan, 2023. "Cooling the mortgage loan market: The effect of borrower-based limits on new mortgage lending," Journal of International Money and Finance, Elsevier, vol. 132(C).
    8. Yihui He & Fang Han, 2023. "On propensity score matching with a diverging number of matches," Papers 2310.14142, arXiv.org, revised Nov 2023.
    9. Almer, Christian & Winkler, Ralph, 2017. "Analyzing the effectiveness of international environmental policies: The case of the Kyoto Protocol," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 125-151.
    10. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    11. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    12. Yiyan Huang & Cheuk Hang Leung & Siyi Wang & Yijun Li & Qi Wu, 2024. "Unveiling the Potential of Robustness in Selecting Conditional Average Treatment Effect Estimators," Papers 2402.18392, arXiv.org, revised Oct 2024.
    13. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    14. Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed," Labour Economics, Elsevier, vol. 65(C).
    15. Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Economics Working Paper Series 2108, University of St. Gallen, School of Economics and Political Science.
    16. Helmut Wasserbacher & Martin Spindler, 2024. "Credit Ratings: Heterogeneous Effect on Capital Structure," Papers 2406.18936, arXiv.org.
    17. Muxuan Liang & Menggang Yu, 2023. "Relative contrast estimation and inference for treatment recommendation," Biometrics, The International Biometric Society, vol. 79(4), pages 2920-2932, December.
    18. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    19. Daniel Jacob, 2019. "Group Average Treatment Effects for Observational Studies," Papers 1911.02688, arXiv.org, revised Mar 2020.
    20. Evan D. Peet & Dana Schultz & Susan Lovejoy & Fuchiang (Rich) Tsui, 2023. "Variation in the infant health effects of the women, infants, and children program by predicted risk using novel machine learning methods," Health Economics, John Wiley & Sons, Ltd., vol. 32(1), pages 194-217, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.02332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.