IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v23y2019i2p220-249.html
   My bibliography  Save this article

Cybersecurity Insurance: Modeling and Pricing

Author

Listed:
  • Maochao Xu
  • Lei Hua

Abstract

Cybersecurity risk has attracted considerable attention in recent decades. However, the modeling of cybersecurity risk is still in its infancy, mainly because of its unique characteristics. In this study, we develop a framework for modeling and pricing cybersecurity risk. The proposed model consists of three components: the epidemic model, loss function, and premium strategy. We study the dynamic upper bounds for the infection probabilities based on both Markov and non-Markov models. A simulation approach is proposed to compute the premium for cybersecurity risk for practical use. The effects of different infection distributions and dependence among infection processes on the losses are also studied.

Suggested Citation

  • Maochao Xu & Lei Hua, 2019. "Cybersecurity Insurance: Modeling and Pricing," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(2), pages 220-249, April.
  • Handle: RePEc:taf:uaajxx:v:23:y:2019:i:2:p:220-249
    DOI: 10.1080/10920277.2019.1566076
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2019.1566076
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2019.1566076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    2. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    3. João Vinícius de França Carvalho & Eduardo Flores & Emiliano A. Valdez, 2022. "The Relevance and Challenges of the Insurance Industry in Contemporary Administration: A Call for Researchers," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 26(3), pages 210313-2103.
    4. Yeftanus Antonio & Sapto Wahyu Indratno & Suhadi Wido Saputro, 2021. "Pricing of cyber insurance premiums using a Markov-based dynamic model with clustering structure," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-28, October.
    5. Zhang, Xiaoyu & Xu, Maochao & Su, Jianxi & Zhao, Peng, 2023. "Structural models for fog computing based internet of things architectures with insurance and risk management applications," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1273-1291.
    6. Yeftanus Antonio & Sapto Wahyu Indratno & Rinovia Simanjuntak, 2021. "Cyber Insurance Ratemaking: A Graph Mining Approach," Risks, MDPI, vol. 9(12), pages 1-34, December.
    7. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.
    8. Mazaher Kianpour & Stewart J. Kowalski & Harald Øverby, 2021. "Systematically Understanding Cybersecurity Economics: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    9. Alessandro Mazzoccoli & Maurizio Naldi, 2022. "An Overview of Security Breach Probability Models," Risks, MDPI, vol. 10(11), pages 1-29, November.
    10. Na Ren & Xin Zhang, 2024. "A novel k-generation propagation model for cyber risk and its application to cyber insurance," Papers 2408.14151, arXiv.org.
    11. Zhang, Xiaoyu & Xu, Maochao & Da, Gaofeng & Zhao, Peng, 2021. "Ensuring confidentiality and availability of sensitive data over a network system under cyber threats," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Kerstin Awiszus & Yannick Bell & Jan Luttringhaus & Gregor Svindland & Alexander Vo{ss} & Stefan Weber, 2022. "Building Resilience in Cybersecurity -- An Artificial Lab Approach," Papers 2211.04762, arXiv.org, revised Sep 2023.
    13. Da, Gaofeng & Xu, Maochao & Zhao, Peng, 2021. "Multivariate dependence among cyber risks based on L-hop propagation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 525-546.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:23:y:2019:i:2:p:220-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.