IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v107y2022icp88-101.html
   My bibliography  Save this article

Cyber-contagion model with network structure applied to insurance

Author

Listed:
  • Hillairet, Caroline
  • Lopez, Olivier
  • d'Oultremont, Louise
  • Spoorenberg, Brieuc

Abstract

In this paper, we provide a model that aims to describe the impact of a massive cyber attack on an insurance portfolio, taking into account the structure of the network. Due to the contagion, such an event can rapidly generate consequent damages, and mutualization of the losses may not hold anymore. The composition of the portfolio should therefore be diversified enough to prevent or reduce the impact of such events, with the difficulty that the relationships between actor are difficult to assess. Our approach consists of introducing a multi-group epidemiological model which, apart from its ability to describe the intensity of connections between actors, can be calibrated from a relatively small amount of data, and through fast numerical procedures. We show how this model can be used to generate reasonable scenarios of cyber events, and investigate the response to different types of attacks or behavior of the actors, allowing to quantify the benefit of an efficient prevention policy.

Suggested Citation

  • Hillairet, Caroline & Lopez, Olivier & d'Oultremont, Louise & Spoorenberg, Brieuc, 2022. "Cyber-contagion model with network structure applied to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 88-101.
  • Handle: RePEc:eee:insuma:v:107:y:2022:i:c:p:88-101
    DOI: 10.1016/j.insmatheco.2022.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668722000889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kshetri, Nir, 2020. "The evolution of cyber-insurance industry and market: An institutional analysis," Telecommunications Policy, Elsevier, vol. 44(8).
    2. Caroline Hillairet & Olivier Lopez, 2021. "Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models," Post-Print hal-02564462, HAL.
    3. Xiaoying Xie & Charles Lee & Martin Eling, 2020. "Cyber insurance offering and performance: an analysis of the U.S. cyber insurance market," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 690-736, October.
    4. Bessy-Roland, Yannick & Boumezoued, Alexandre & Hillairet, Caroline, 2021. "Multivariate Hawkes process for cyber insurance," Annals of Actuarial Science, Cambridge University Press, vol. 15(1), pages 14-39, March.
    5. Runhuan Feng & Jose Garrido, 2011. "Actuarial Applications of Epidemiological Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(1), pages 112-136.
    6. Fahrenwaldt, Matthias A. & Weber, Stefan & Weske, Kerstin, 2018. "Pricing Of Cyber Insurance Contracts In A Network Model," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1175-1218, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Na Ren & Xin Zhang, 2024. "A novel k-generation propagation model for cyber risk and its application to cyber insurance," Papers 2408.14151, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caroline Hillairet & Olivier Lopez & Louise d'Oultremont & Brieuc Spoorenberg, 2022. "Cyber contagion: impact of the network structure on the losses of an insurance portfolio," Post-Print hal-03388840, HAL.
    2. Caroline Hillairet & Olivier Lopez & Louise d'Oultremont & Brieuc Spoorenberg, 2021. "Cyber contagion: impact of the network structure on the losses of an insurance portfolio," Working Papers hal-03388840, HAL.
    3. Caroline Hillairet & Olivier Lopez, 2021. "Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models," Post-Print hal-02564462, HAL.
    4. Meng Sun & Yi Lu, 2022. "A Generalized Linear Mixed Model for Data Breaches and Its Application in Cyber Insurance," Risks, MDPI, vol. 10(12), pages 1-23, November.
    5. Na Ren & Xin Zhang, 2024. "A novel k-generation propagation model for cyber risk and its application to cyber insurance," Papers 2408.14151, arXiv.org.
    6. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.
    7. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    8. D'Amato, Valeria & Di Lorenzo, Emilia & Piscopo, Gabriella & Sibillo, Marilena & Trotta, Annarita, 2024. "Insurance business and social sustainability: A proposal," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    9. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    10. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    11. Camélia Radu & Nadia Smaili, 2022. "Board Gender Diversity and Corporate Response to Cyber Risk: Evidence from Cybersecurity Related Disclosure," Journal of Business Ethics, Springer, vol. 177(2), pages 351-374, May.
    12. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang, 2022. "Cyber Loss Model Risk Translates to Premium Mispricing and Risk Sensitivity," Papers 2202.10588, arXiv.org, revised Mar 2023.
    13. Xie, Haipeng & Sun, Xiaotian & Fu, Wei & Chen, Chen & Bie, Zhaohong, 2023. "Risk management for integrated power and natural gas systems against extreme weather: A coalitional insurance contract approach," Energy, Elsevier, vol. 263(PB).
    14. Yeftanus Antonio & Sapto Wahyu Indratno & Rinovia Simanjuntak, 2021. "Cyber Insurance Ratemaking: A Graph Mining Approach," Risks, MDPI, vol. 9(12), pages 1-34, December.
    15. Kshetri, Nir, 2024. "The academic industry’s response to generative artificial intelligence: An institutional analysis of large language models," Telecommunications Policy, Elsevier, vol. 48(5).
    16. Francisco J. Zagmutt & Stephen H. Sempier & Terril R. Hanson, 2013. "Disease Spread Models to Estimate Highly Uncertain Emerging Diseases Losses for Animal Agriculture Insurance Policies: An Application to the U.S. Farm‐Raised Catfish Industry," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1924-1937, October.
    17. Camille Delbrouck & Jennifer Alonso-García, 2024. "COVID-19 and Excess Mortality: An Actuarial Study," Risks, MDPI, vol. 12(4), pages 1-27, March.
    18. Hainaut, Donatien, 2020. "An actuarial approach for modeling pandemic risk," LIDAM Discussion Papers ISBA 2020025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Donatien Hainaut, 2020. "An Actuarial Approach for Modeling Pandemic Risk," Risks, MDPI, vol. 9(1), pages 1-28, December.
    20. Ze Chen & Bingzheng Chen & Yu Mao, 2024. "Fence off Black Swans: The Economics of Insurance for Vaccine Injury," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(5), pages 995-1025, October.

    More about this item

    Keywords

    Cyber insurance; Cyber risk; Compartmental models; Multi-SIR; Network structures;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:107:y:2022:i:c:p:88-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.